

Preview - Information

Thank you for your interest in this product. Within this preview, you will see:

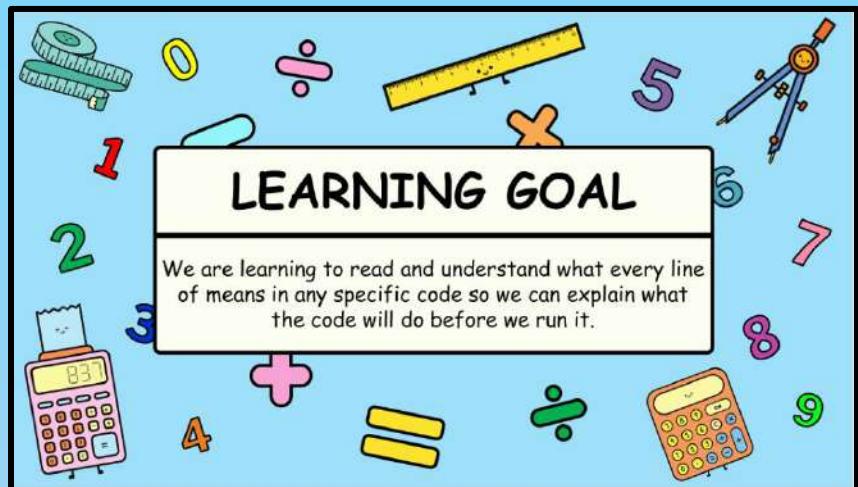
- ✓ A selection of Ready-To-Use Google Slides Lessons.
- ✓ A selection of worksheets included in the workbook.

When you make a purchase, you will receive a folder that contains the .pdf workbook file and a link to where you can make a copy of the Google Slides Lessons unit to your Google Drive.

Thank you for shopping with us. Please let us know if you have any questions at:

rob@supersimplesheets.com

Google Slides Lessons Preview


Ontario Math Curriculum

Algebra – Patterns, Equations – Grade 3

3-Part Lesson Format

Part 1 – Minds On!

- Learning Goals
- Discussion Questions
- Quotes
- And More!

Interpreting Code

Will the code work? Circle yes or no. Drag the numbers and labels to re-write any code that won't work.

Code	Code	Code
Go right 2 Go up 1 Go left 5 Enter shop Go up 2 Enter house	Go down 2 Go right 2 Enter shop Go down 1 Go left 5 Enter house	Go right 1 Go down 3 Enter shop Go right 5 Go up 4 Enter house
YES	NO	YES

Line 1: _____ Line 2: _____ Line 3: _____ Line 4: _____ Line 5: _____ Line 6: _____

Part 2 – Action!

- Writing
- Matching
- Drag and Drop
- Drawing
- And More!

Part 3 – Consolidation!

- Exit Cards
- Quizzes
- Reflection
- And More!

Exit Card-Questions

Tim moves right 5 and up 2, what will he get to eat?

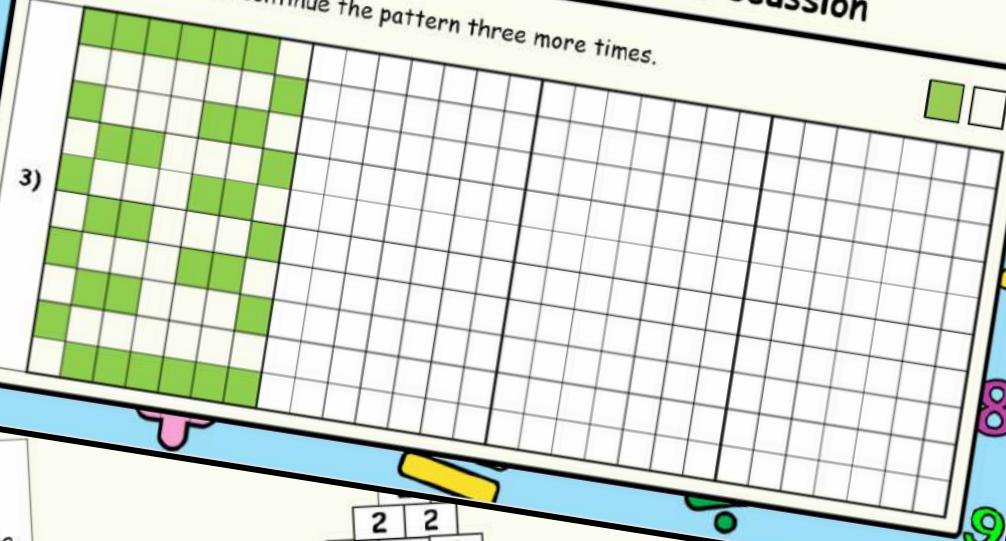
Tim moves left 1 and down 6, what will he get to eat?

Tim moves right 1 and down 2, what will he get to eat?

Tim moves left 2, down 4 and right 4, what will he get to eat?

Ontario Math Curriculum

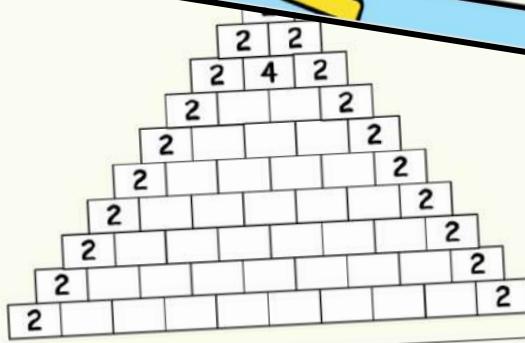
Algebra – Patterns, Equations – Grade 3


Increasing Patterns - Shapes

Drag the coloured block on top of the two blocks that were added to the pattern.

#	Figure 1	Figure 2	Figure 3	Figure 4
1)				
2)				
3)				

Repeating Pattern-Discussion


Drag the boxes to continue the pattern three more times.

The Fibonacci sequence is a pattern in which each number is the sum of the two numbers before it. For example, the first 10 numbers of the sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

1	2	3	4
2	3	4	5
3	4	5	6
4	5	6	7
5	6	7	8
6	7	8	9
7	8	9	
8	9		
9			

Discussion: How many terms can you write in the Fibonacci sequence?

Ontario Math Curriculum

Algebra – Patterns, Equations – Grade 3

Increasing Pattern Rules – Adding To 100

Drag the numbers to create patterns according to the pattern rule.

#	PATTERN	RULE
1)		Start at 24, then add 5 each time
2)		Start at 67, then add 2 each time
3)		Start at 3, then add 7 each time
4)		Start at 50, then add 4 each time
5)		Start at 29, then add 8 each time

Shrinking/Decreasing Patterns

$\begin{array}{ccccccc} -10 & -10 & -10 & -10 & -10 \\ \swarrow & \swarrow & \swarrow & \swarrow & \swarrow \\ 60, 50, 40, 30, 20, 10 \end{array}$

1) $32, 28, 24, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}$

2) $65, 55, 45, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}$

3) $89, 86, 83, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}$

4) $118, 116, 114, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}$

5) $355, 348, 341, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}$

6) $550, 548, 546, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}, \underline{\hspace{2cm}}$

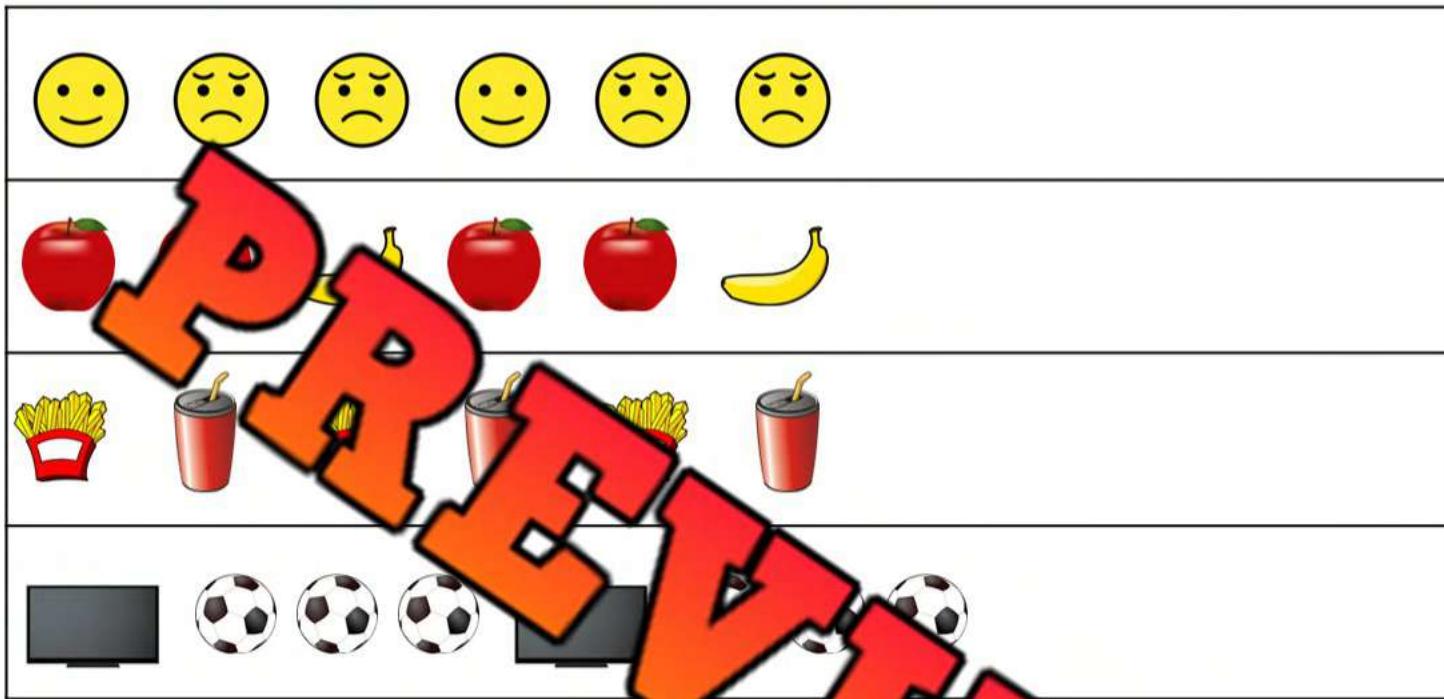
10s

Find the number patterns below.

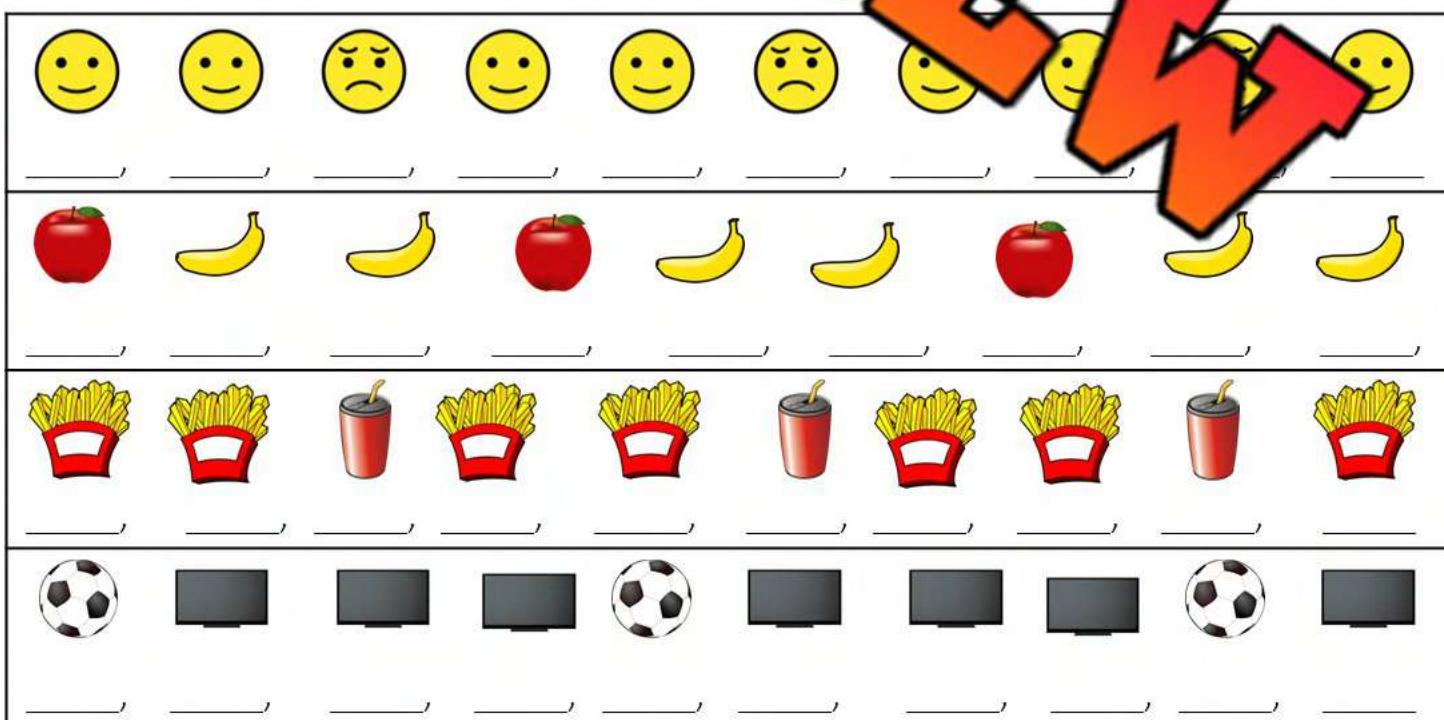
52	62	72							
267	277	287							
594	604	614							

Workbook Preview

Grade 3


C1. Patterns and Relationships

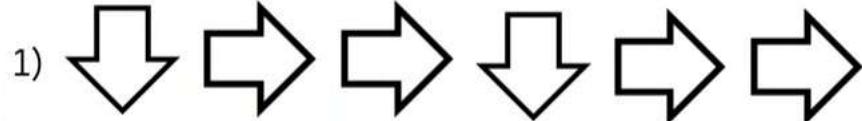
	Curriculum Expectations	Pages That Cover the Expectations
C1.1	identify and describe repeating elements and operations in a variety of patterns, including patterns found in real-life contexts	5 – 32, 85 – 86
C1.2	<p>Preview of 120 pages from this product that contains 373 pages total.</p>	
C1.3	determine pattern rules and use them to extend patterns, make and justify predictions, and identify missing elements in patterns that have repeating elements, movements, or operations	33 – 51, 65 – 78, 82 – 91
C1.4	create and describe patterns to illustrate relationships among whole numbers up to 1000	6, 9 – 14, 52 – 64, 79 – 81


Repeating Patterns

Part 1

Continue the repeating patterns below by drawing more objects

Part 2


Check out the repeating AB patterns below. Label the _____ below A and B

Repeating Patterns – Changing Orientation

Part 1

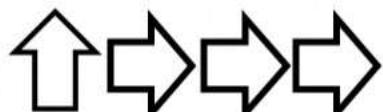
Continue the repeating patterns below with three more shapes

Part 2

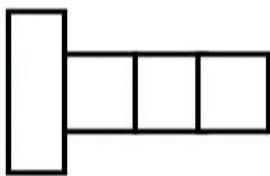
Draw repeating patterns using the same shapes in different positions

1)

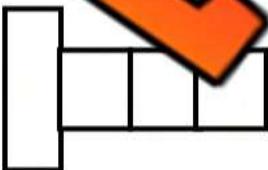
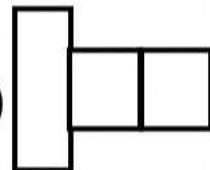
2)


3)

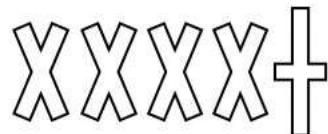
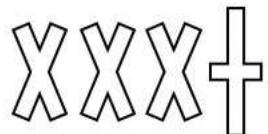
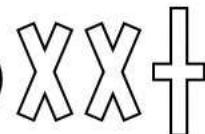
4)

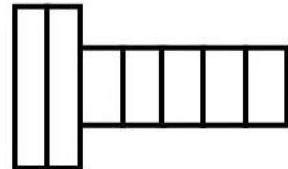
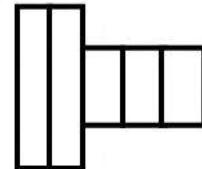

Increasing Patterns – Shapes

Questions



Draw the last part of the pattern

2)




3)

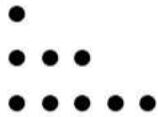


4)

5)

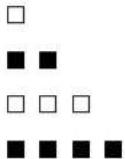
6)

Increasing Patterns – Shapes

Questions


Draw the next line of the increasing pattern

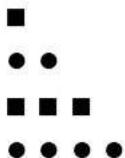
1) Draw the next line in the pattern.


Answer

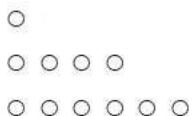
2) Draw the next line in the pattern.

Answer

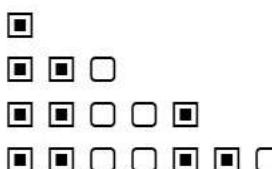
3) Draw the next line in the pattern.



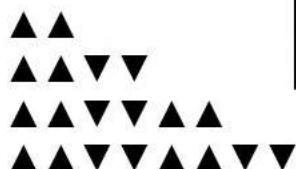
4) Draw the next line in the pattern.


Answer

5) Draw the next line in the pattern.


Answer

6) Draw the next line in the pattern.


Answer

7) Draw the next line in the pattern.

Answer

8) Draw the next line in the pattern.

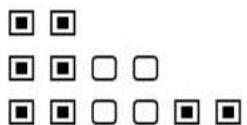
Answer

Exit Cards

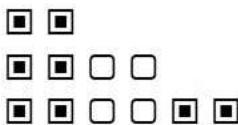
Cut Out

Cut out the exit cards below and have students complete them at the end of class

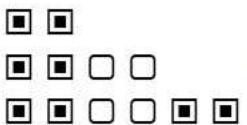
Name: _____


Draw the next 2 lines in the pattern.

PREVIEW


Name: _____

Draw the next 2 lines in the pattern.


Name: _____

Draw the next 2 lines in the pattern.

Name: _____

Draw the next 2 lines in the pattern.

Increasing Patterns – Shapes

Part 1 Shade in the block that was added to the pattern

1) Figure 1

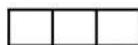


Figure 2

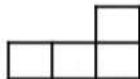


Figure 3

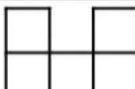


Figure 4

2) Figure 1

Figure 2

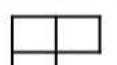


Figure 3

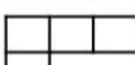


Figure 4

3) Figure 1

Figure 2

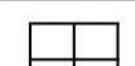


Figure 3

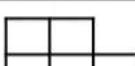


Figure 4

4) Figure 1

Figure 2

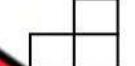


Figure 3

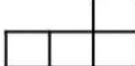


Figure 4

Part 2 Shade in the two blocks that were added to the pattern

1) Figure 1

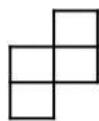


Figure 2

Figure 3

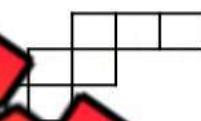


Figure 4

2) Figure 1

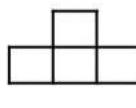


Figure 2

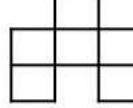


Figure 3

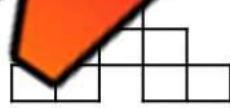
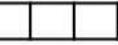



Figure 4

3) Figure 1

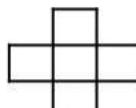


Figure 2

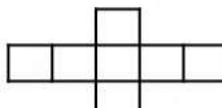


Figure 3

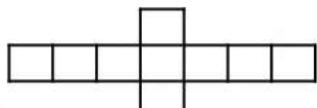


Figure 4

4) Figure 1

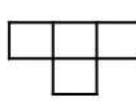


Figure 2

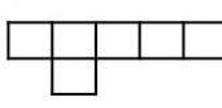


Figure 3

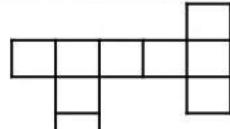


Figure 4

Mayan Number System Patterns

Analyze

Check out the Mayan Number System below. Write what you notice about the patterns found in the number system.

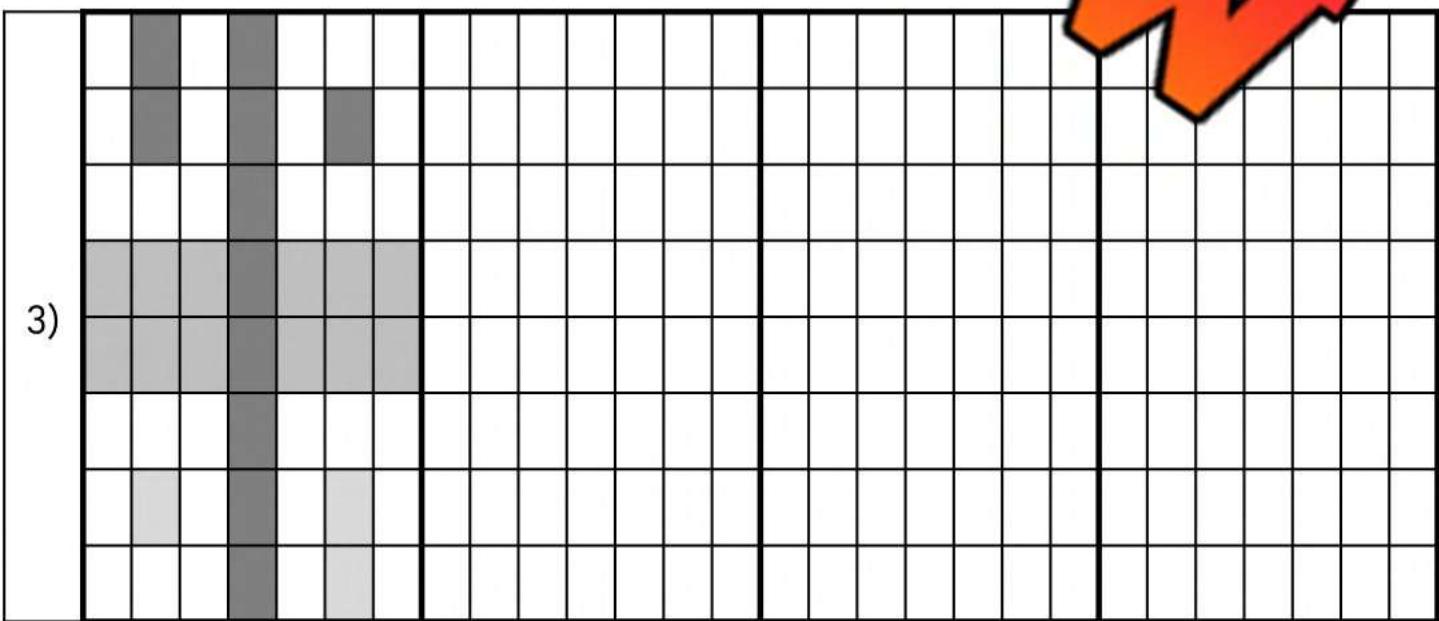
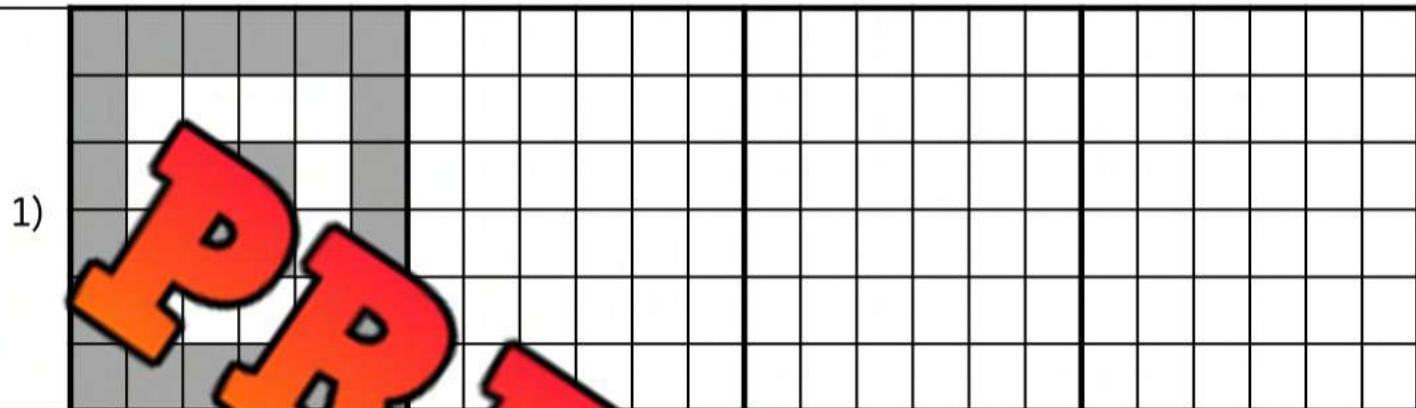
0	1	2	3	4
5	7	8	9	
10	11	14		
15	16	17	19	
20	21	22	30	33

1) What do you think the dots mean?

2) What do you think the shells mean?

3) What do you think the lines mean?

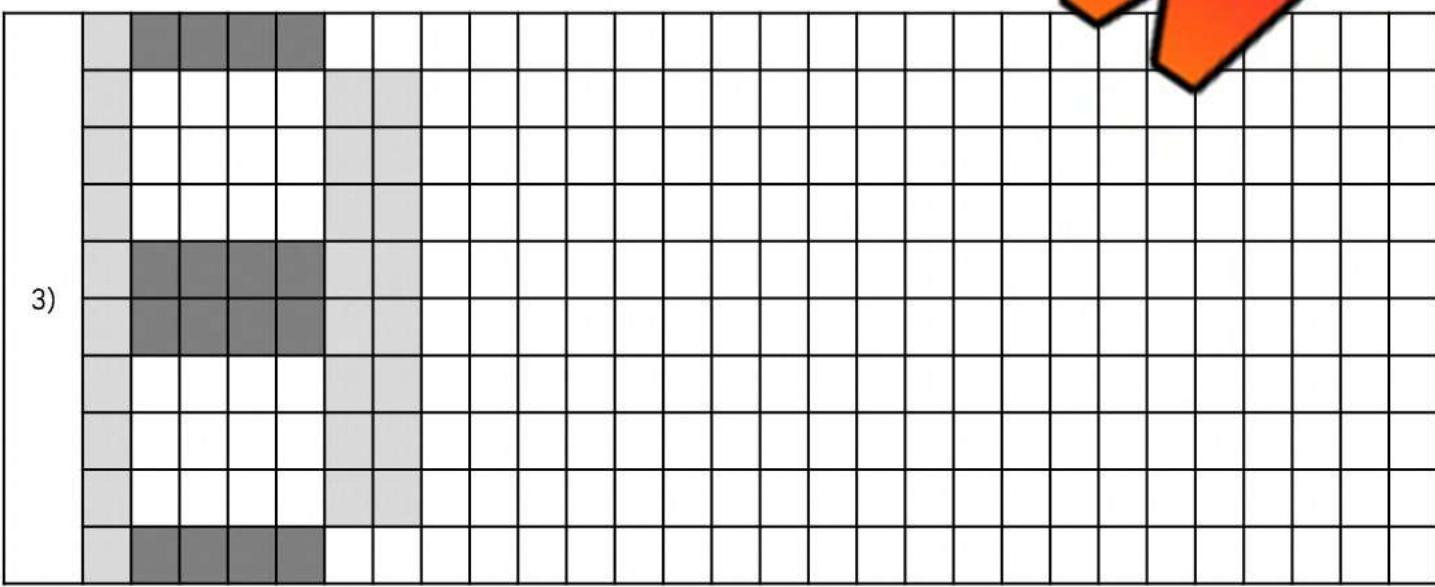
4) How are some dots different? Do they have different values? Explain.

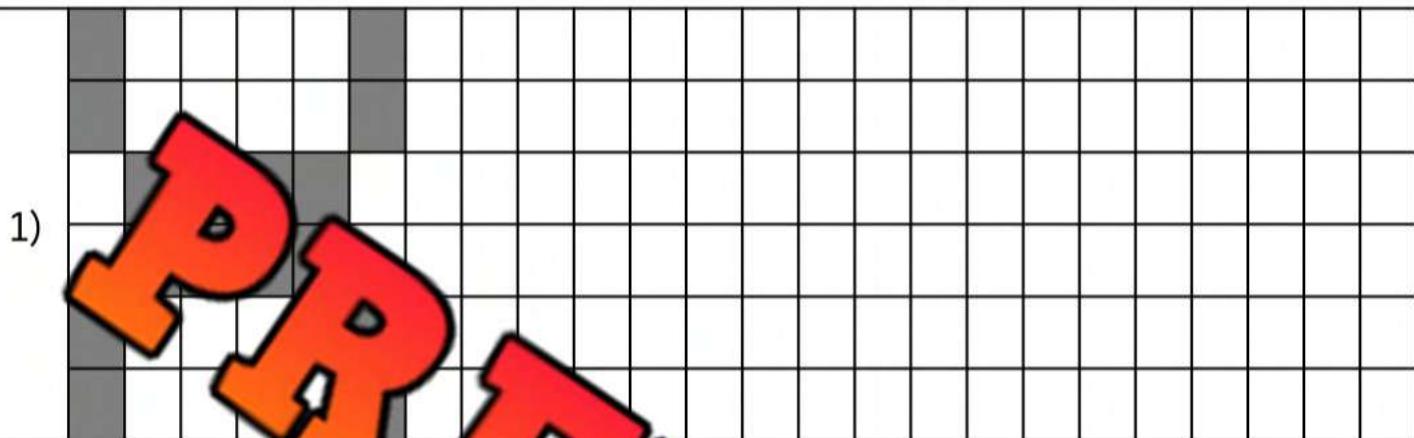


5) Write the symbols for the numbers below.

Number	Symbol	Number	Symbol
1) 0		5) 45	
2) 5		6) 52	
3) 12		7) 67	
4) 27		8) 91	

Quilting Repeating Pattern

Draw




Continue the pattern by drawing the replica of what you see multiple times

Quilting Repeating Pattern

Draw

Continue the pattern by drawing the replica of what you see multiple times

Decreasing Patterns – Emojis

Questions

Draw the missing line of the decreasing pattern

1) Draw the missing line in the pattern.

2) Draw the missing line in the pattern.

3) Draw the missing line in the pattern.

4) Draw the missing line in the pattern.

5) Draw the missing line in the pattern.

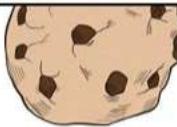
6) Draw the missing line in the pattern.

7) Draw the missing line in the pattern.

8) Draw the missing line in the pattern.



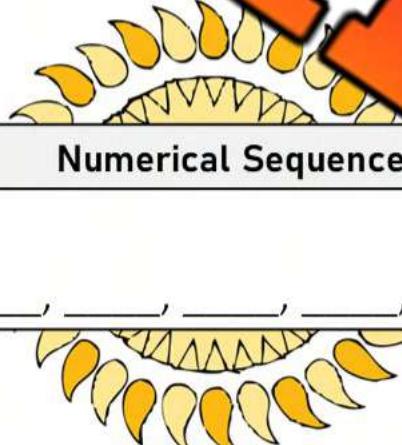
Decreasing Patterns


Questions

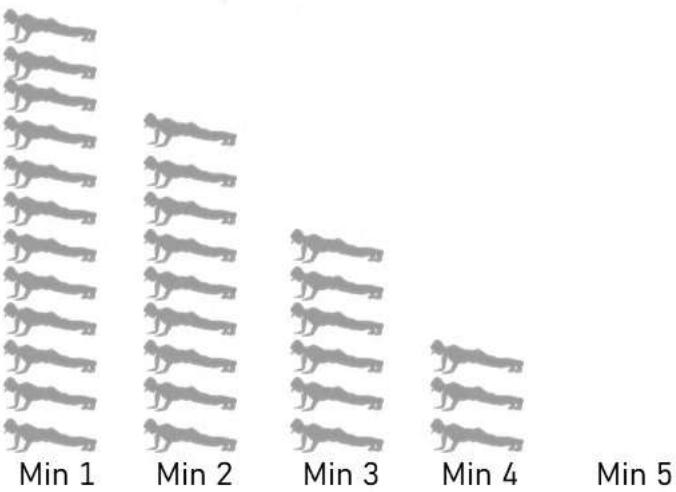
Fill in the numerical sequences for the patterns below

1) Kerry kept track of how many cookies she ate each day using addition signs.

Numerical Sequence


____, ____ , ____ , ____ , ____

2) Ally writes down how many days it was sunny each month from June – November.


Numerical Sequence

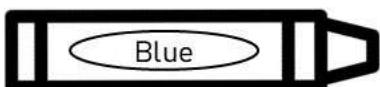
____, ____ , ____ , ____ , ____

June July Aug Sept Oct Nov

3) Sam counted how many push-ups he could do every minute for 5 minutes.

Numerical Sequence
____, ____ , ____ , ____ , ____

Hundreds Chart Patterns



Questions

Fill in the missing numbers

1	2	3	4	5	6	7	8	9	10
11		13	14	15	16	17	18	19	20
21			24	25	26	27	28	29	30
31	32		34	35	36	37	38	39	40
41	42	43		45		47	48	49	50
51	52	53	54		56		58	59	60
61	62	63	64	65				69	70
71	72	73	74	75	76	77	78		80
81	82	83	84	85	86	87	88		90
91	92	93	94	95	96	97	98	99	100

Directions

Follow the instructions below

1) Colour the odd numbers2) Colour the even numbers

Hundreds Chart Patterns

Directions

Follow the instructions below

Colour the pattern rule: start at 3, add 3 each time

1	2	3	4	5	6	7	8	9	10
11		13	14	15	16	17	18	19	20
21		23	24	25	26	27	28	29	30
31		33	34	35	36	37	38	39	40
41	42		44	45	46	47	48	49	50
51	52				56	57	58	59	60
61	62	63			66	67	68	69	70
71	72	73				77	78	79	80
81	82	83	84		86		88	89	90
91	92	93	94	95	96	97	98	99	100

Colour the pattern rule: start at 1, add 1 each time

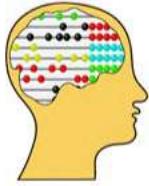
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17			20
21	22	23	24	25	26	27	28		30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Fibonacci Sequence

The Fibonacci sequence is a pattern in which each number is the sum of the two numbers before it. For example, the first 10 numbers of the sequence are:

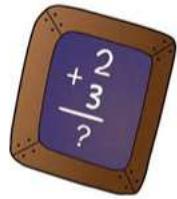
0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Part 1


Fill in the numbers below each pair of numbers

Part 2

How many terms can you write in the Fibonacci sequence?


Growing Patterns - Addition

Growing/Increasing Patterns

$$\begin{array}{cccccc} +10 & +10 & +10 & +10 & +10 \\ \wedge & \wedge & \wedge & \wedge & \wedge \\ 10, 20, 30, 40, 50, 60 \end{array}$$

$$\begin{array}{cccccc} +5 & +5 & +5 & +5 & +5 \\ \wedge & \wedge & \wedge & \wedge & \wedge \\ 3, 8, 13, 18, 23, 28 \end{array}$$

Part 1 Growing Patterns - Addition

$$\begin{array}{cc} \wedge & \wedge \\ 1) & 2, 4, 6, \underline{\quad, \quad, \quad} \end{array}$$

$$\begin{array}{cc} \wedge & \wedge \\ 2) & 6, 12, 18, \underline{\quad, \quad, \quad} \end{array}$$

$$\begin{array}{cc} \wedge & \wedge \\ 3) & 10, 15, 20, \underline{\quad, \quad, \quad} \end{array}$$

$$\begin{array}{cc} \wedge & \wedge \\ 5) & 8, 16, 24, \underline{\quad, \quad, \quad} \end{array}$$

$$\begin{array}{cc} \wedge & \wedge \\ 4) & 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 58, \underline{\quad, \quad, \quad} \end{array}$$

$$\begin{array}{cc} \wedge & \wedge \\ 6) & 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 58, \underline{\quad, \quad, \quad} \end{array}$$

Part 2

Follow the rule by adding the next number in the sequence.

$$1) \text{ (Add 5)}$$

$$7, 12, 17, \underline{\quad, \quad, \quad}$$

$$2) \text{ (Add 3)}$$

$$72, 75, 78, \underline{\quad, \quad, \quad}$$

$$3) \text{ (Add 6)}$$

$$2, 8, 14, \underline{\quad, \quad, \quad}$$

$$4) \text{ (Add 8)}$$

$$8, 16, 24, \underline{\quad, \quad, \quad}$$

$$5) \text{ (Add 10)}$$

$$4, 14, 24, \underline{\quad, \quad, \quad}$$

$$6) \text{ (Add 4)}$$

$$42, 46, 50, \underline{\quad, \quad, \quad}$$

Increasing Patterns Rules – Adding To 100

Questions

Fill in the blanks by figuring out the pattern rules

12, 15, 18, 21, 24, 27, 30

Start at _____, then add _____ each time

8, 18, 28, 38, 48, 58, 68, 78, 73

Start at _____, then add _____ each time

21, 31, 41, 51, 61, 71, 81

Start at _____, then add _____ each time

37, 43, 49, 55, 61, 67, 73

Start at _____, then add _____ each time

54, 61, 68, 75, 82, 89, 96

Start at _____, then add _____ each time

40, 49, 58, 67, 76, 85, 94

Start at _____, then add _____ each time

Using Pattern Rules – Adding To 100

Questions

Write your own patterns using the pattern rule

1) _____, _____, _____, _____, _____, _____

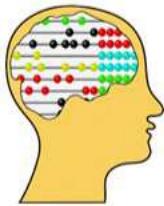
Pattern Rule: Start at 7, add 3 each time

2) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 10, add 10 each time

3) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 18, add 2 each time

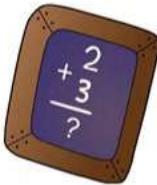

4) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 36, add 8 each time

5) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 54, add 6 each time

Growing Patterns


Growing/Increasing Patterns

Addition

$$\begin{array}{cccc}
 +2 & +2 & +2 & +2 \\
 \wedge & \wedge & \wedge & \wedge \\
 2, & 4, & 6, & 8, 10
 \end{array}$$

Multiplication

$$\begin{array}{cccc}
 \times 2 & \times 2 & \times 2 & \times 2 \\
 \wedge & \wedge & \wedge & \wedge \\
 2, & 4, & 8, & 16, 32
 \end{array}$$

Part 1

Growing Patterns - Addition

$$\begin{array}{c}
 + \\
 \wedge \\
 1) 5, 10, 15, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 + \\
 \wedge \\
 4) 10, 20, 30, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 + \\
 \wedge \\
 2) 3, 6, 9, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 + \\
 \wedge \\
 5) 10, 20, 30, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 + \\
 \wedge \\
 3) 2, 4, 6, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 + \\
 \wedge \\
 6) 4, 8, 16, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

Part 2

Growing Patterns - Multiplication

$$\begin{array}{c}
 \times \\
 \wedge \\
 1) 5, 10, 20, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 \times \\
 \wedge \\
 4) 10, 20, 40, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 \times \\
 \wedge \\
 2) 2, 4, 8, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 \times \\
 \wedge \\
 5) 100, 200, 400, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 \times \\
 \wedge \\
 3) 1, 3, 9, \underline{\quad}, \underline{\quad}
 \end{array}$$

$$\begin{array}{c}
 \times \\
 \wedge \\
 6) 1, 5, 25, \underline{\quad}, \underline{\quad}, \underline{\quad}
 \end{array}$$

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class

Name: _____

Growing Multiplication Patterns

1) (Multipli

1,

2) 5, 25, 125,

Start at _____, multiply by _____ each time

3) _____, _____, _____, _____

Pattern Rule: Start at 2, multiply by _____ each time.

Name: _____

Growing Multiplication Patterns

1) (Multiply by 3)

1, 3, _____, _____

2) 5, 25, 125, 3125, 15625

Start at _____, multiply by _____ each time

3) _____, _____, _____, _____

Pattern Rule: Start at 2, multiply by 4 each time.

Name: _____

Growing Multiplication Patterns

1) (Multiply by 3)

1, 3, _____, _____

2) 5, 25, 125, 3125, 15625

Start at _____, multiply by _____ each time

3) _____, _____, _____, _____

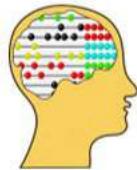
Pattern Rule: Start at 2, multiply by 4 each time.

Name: _____

Growing Multiplication Patterns

1) (Multiply by 3)

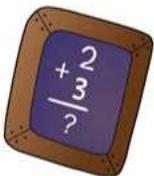
1, 3, _____, _____


2) 5, 25, 125, 3125, 15625

Start at _____, multiply by _____ each time

3) _____, _____, _____, _____

Pattern Rule: Start at 2, multiply by 4 each time.


Shrinking Patterns - Subtraction

Shrinking/Decreasing Patterns

$-10 \quad -10 \quad -10 \quad -10 \quad -10$
 $\wedge \quad \wedge \quad \wedge \quad \wedge \quad \wedge$
 $60, 50, 40, \underline{30}, \underline{20}, 10$

$-5 \quad -5 \quad -5 \quad -5 \quad -5$
 $\wedge \quad \wedge \quad \wedge \quad \wedge \quad \wedge$
 $45, 40, 35, \underline{30}, \underline{25}, 20$

Part 1

Fill in the missing numbers in the pattern

$\wedge \quad \wedge$ 1) 12, 10, 8, _____	$\wedge \quad \wedge$ 2) 23, 19, 15, _____, _____, _____
$\wedge \quad \wedge$ 3) 32, 26, 20, _____, _____, _____	\wedge 78, 70, 65, _____, _____, _____
$\wedge \quad \wedge$ 5) 56, 48, 40, _____, _____, _____	\wedge 6) 8, 5, 3, _____, _____, _____

Part 2

Follow the rule by adding the next number in the sequence

1) (Subtract 2) 18, 16, 14, _____, _____, _____	2) (Subtract 3) 30, 27, 24, _____, _____, _____
3) (Subtract 5) 38, 33, 28, _____, _____, _____	4) (Subtract 10) 60, 50, 40, _____, _____, _____
5) (Subtract 6) 62, 56, 50, _____, _____, _____	6) (Subtract 4) 78, 74, 70, _____, _____, _____

Decreasing Patterns Rules – Subtracting (1)

Questions

Fill in the blanks by figuring out the pattern rules

21, 18, 15, 12, 9, 6, 3, 0

Start at _____, then subtract _____ each time

39, 34, 29, 24, 19, 14

Start at _____, then subtract _____ each time

58, 54, 50, 38, 34

Start at _____, then subtract _____ each time

71, 65, 59, 53, 47, 35

Start at _____, then subtract _____ each time

88, 80, 72, 64, 56, 48, 40

Start at _____, then subtract _____ each time

99, 92, 85, 78, 71, 64, 57

Start at _____, then subtract _____ each time

Using Pattern Rules – Subtraction (1)

Questions

Write your own patterns using the pattern rule

1) _____, _____, _____, _____, _____, _____

Rule: Start at 47, subtract 3 each time

2) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 50, subtract 10 each time

3) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 36, subtract 4 each time

4) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 68, subtract 8 each time

5) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 91, subtract 6 each time

Shrinking / Decreasing Patterns

Shrinking/Decreasing Patterns

Subtraction

$$\begin{array}{cccc} -3 & -3 & -3 & -3 \\ \wedge & \wedge & \wedge & \wedge \\ 20, 17, 14, 11, 8 \end{array}$$

Division

$$\begin{array}{ccc} \div 2 & \div 2 & \div 2 \\ \wedge & \wedge & \wedge \\ 80, 40, 20, 10 \end{array}$$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Part 1 Shrinking Patterns - Subtraction

PREVIEW

1) 10, 8, 6, _____

5) 100, 90, 80, _____, _____, _____

2) 20, 17, 14, _____, _____

145, 140, _____, _____, _____

3) 30, 25, 20, _____, _____, _____

129, _____, _____

4) 174, 170, 166, _____, _____, _____

8) 158, 152, 146, _____

Part 2 Shrinking Patterns - Division

$$\begin{array}{ccc} \div 2 & \div 2 & \div 2 \\ \wedge & \wedge & \wedge \end{array}$$

1) 120, 60, 30, _____

$$\begin{array}{ccc} \div 3 & \div 3 & \div 3 \\ \wedge & \wedge & \wedge \end{array}$$

3) 162, 54, 18, _____, _____

$$\begin{array}{ccc} \div 2 & \div 2 & \div 2 \\ \wedge & \wedge & \wedge \end{array}$$

2) 800, 400, 200, _____, _____

$$\begin{array}{ccc} \div 2 & \div 2 & \div 2 \\ \wedge & \wedge & \wedge \end{array}$$

4) 160, 80, 40, _____, _____

Pattern Rule – Addition

Part 1

Continue the growing/increasing patterns below

1) 10, 20, 30, _____, _____, _____

Pattern Rule: Start at 10, add _____ each time

2) 2, 5, 8, _____, _____

Pattern Rule: Start at 2, add _____ each time

3) 35, 40, 45, _____, _____

Pattern Rule: Start at 35, add _____ each time

4) 50, 60, 70, _____

Pattern Rule: Start at _____, add _____ each time

5) 143, 147, 151, _____, _____, _____

Pattern Rule: Start at _____, add _____ each time

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Part 2

Write your own patterns using the patterns above

1) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 20, add 5 each time

2) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 10, add 0 each time

3) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 127, add 5 each time

4) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 116, add 4 each time

Pattern Rule - Multiplication

Part 1

Continue the growing/increasing patterns below

1) 5, 10, 20, _____, _____, _____

Pattern Rule: Start at 5, multiply by _____ each time

2) 1, 3, 9, _____, _____

Pattern Rule: Start at 1, multiply by _____ each time

3) 1, 4, _____

Pattern Rule: Start at 1, multiply by _____ each time

4) 10, 20, 40, _____

Pattern Rule: Start at 10, multiply by _____ each time

5) 2, 6, 18, _____, _____, _____

Pattern Rule: Start at 2, multiply by _____ each time

Part 2

Write your own patterns using the pattern rule

1) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 1, multiply by 2 each time

2) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 3, multiply by 1 each time

3) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 5, multiply by 4 each time

4) _____, _____, _____, _____, _____, _____

Pattern Rule: Start at 10, multiply by 2 each time

Pattern Rule - Subtraction

Part 1

Continue the shrinking/decreasing patterns below

1) 12, 10, 8, _____, _____, _____

Pattern Rule: Start at 12, subtract _____ each time

2) 22, 19, _____, _____, _____

Pattern Rule: Start at _____ subtract _____ each time

3) 14, 10, 6, 4, 0, 13, _____, _____, _____

Pattern Rule: Start at _____ subtract _____ each time

4) 74, 68, 62, _____

Pattern Rule: Start at _____ subtract _____ each time

5) 133, 123, 113, _____

Pattern Rule: Start at _____ subtract _____ each time

Part 2

Write your own patterns using the pattern rule

1) _____, _____, _____, _____, _____

Pattern Rule: Start at 50, subtract 0 each time

2) _____, _____, _____, _____, _____

Pattern Rule: Start at 236, subtract 6 each time

3) _____, _____, _____, _____, _____

Pattern Rule: Start at 794, subtract 5 each time

4) _____, _____, _____, _____, _____

Pattern Rule: Start at 142, subtract 4 each time

Pattern Rule - Division

Part 1

Continue the growing/increasing patterns below

1) 120, 60, 30, _____

Pattern Rule: Start at 120, divide by 2 each time

2) 10, 5, _____, _____, _____

Pattern Rule: Start at 10, divide by _____, each time

3) 243, 81, 27, _____, _____

Pattern Rule: Start at _____, divide by _____, each time

4) 256, 64, 16, _____, _____

Pattern Rule: Start at _____, divide by _____ each time

Part 2

Write your own patterns using the patterns above

1) _____, _____, _____, _____, _____

Pattern Rule: Start at 64, divide by 2 each time

2) _____, _____, _____, _____, _____

Pattern Rule: Start at 150, divide by 1 each time

3) _____, _____, _____, _____, _____

Pattern Rule: Start at 375, divide by 5 each time

4) _____, _____, _____, _____, _____

Pattern Rule: Start at 1024, divide by 4 each time

Number Strings – Addition and Subtraction

Fill in the
Blanks

Fill in the blanks to investigate the patterns between addition and subtraction

Addition	Subtraction
$60 + 5 =$ _____	$67 - 5 =$ _____
$61 + 4 =$ _____	$67 - 4 =$ _____
$64 + 3 =$ _____	$67 - 3 =$ _____
$65 + 2 =$ _____	$67 - 2 =$ _____
$66 + 1 =$ _____	$67 - 1 =$ _____
$67 + 0 =$ _____	$67 - 0 =$ _____

Addition	Subtraction
$50 +$ _____ $= 57$	$57 -$ _____
$_____ + 6 = 57$	$57 -$ _____
$52 +$ _____ $= 57$	$57 -$ _____ $= 52$
$53 + 4 =$ _____	$57 -$ _____ $= 53$
$54 +$ _____ $= 57$	$57 - 3 =$ _____
$_____ + 2 = 57$	$57 -$ _____ $= 55$
$56 +$ _____ $= 57$	$57 -$ _____ $- 1 = 56$
$57 + 0 =$ _____	$57 - 0 =$ _____

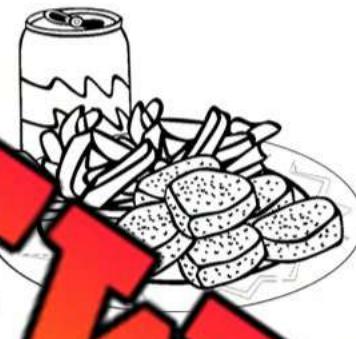
Number Strings – Addition and Subtraction

Fill in the
Blanks

Fill in the blanks to investigate the patterns between addition and subtraction

Addition	Subtraction
$900 + 5 =$ _____	$905 -$ _____ $= 900$
$900 +$ _____ $= 905$	$905 - 4 =$ _____
$905 +$ _____ $=$ _____	$905 -$ _____ $= 902$
$903 +$ _____ $=$ _____	_____ $- 2 = 903$
$904 + 1 =$ _____	$905 -$ _____ $= 904$
$905 +$ _____ $= 905$	_____ $- 0 =$ _____

Addition	Subtraction
$400 +$ _____ $= 407$	$407 -$ _____ $= 400$
$401 + 6 =$ _____	$407 - 6 =$ _____
_____ $+ 5 = 407$	_____ $- 5 = 402$
$403 +$ _____ $= 407$	$407 -$ _____ $= 403$
$404 + 3 =$ _____	$407 - 3 =$ _____
$405 +$ _____ $= 407$	$407 -$ _____ $= 405$
_____ $+ 1 = 407$	_____ $- 1 = 406$
$407 +$ _____ $= 407$	$407 -$ _____ $= 407$


Patterning Subtraction Word Problems – Spending

Questions**Follow the problem-solving steps below**

<input type="checkbox"/> Read the problem carefully	<input type="checkbox"/> Underline important information	<input type="checkbox"/> Draw pictures
<input type="checkbox"/> Write a number sentence	<input type="checkbox"/> Solve the problem	<input type="checkbox"/> Check your answer

Henry's mom gives him lunch every day for one week. After his first lunch, he has \$180. After his second lunch, he has \$172. After his third lunch, he has \$161.

a) How much money does Henry have left after his fourth lunch?

b) How much money will Henry have after his 7th lunch?

c) How much does each lunch cost?

Patterning Subtraction Word Problems – Running

Questions**Follow the problem-solving steps below**

<input type="checkbox"/>	Read the problem carefully	<input type="checkbox"/>	Underline important information	<input type="checkbox"/>	Draw pictures
<input type="checkbox"/>	Write a number sentence	<input type="checkbox"/>	Solve the problem	<input type="checkbox"/>	Check your answer

Riley ran a half marathon each day for 9 days. After her first day, she had 180km left that she needed to run. After the second day, she had 150km left. After the third day, she had 147km left.

a) How many km did she have left after the fourth day?

b) How many km did she have left after the 7th day?

c) How many km is a half marathon?

Activity Title: Pattern Treasure Hunt

Objective**What are we learning about?**

To reinforce students' understanding of growing addition and shrinking subtraction patterns through a dynamic and engaging treasure hunt game. This activity aims to improve problem-solving speed and accuracy while promoting teamwork and active learning.

Materials**What you will need for the activity.**

- Stopwatch or timer (or use a smartphone)
- Index cards
- Markers
- Small prizes or treats (for winners)
- Tape

Instructions**How you will complete the activity.**

- 1) Cut out the index cards provided. These will be the treasure hunt challenge questions.
- 2) Hide these cards around the classroom or in a designated area outside, safe outside area, taping them under chairs, desks, or tucked into non-obvious spots.
- 3) Divide the class into small teams and give each team a stopwatch.
- 4) Explain the game: each team will hunt for a card, solve the problem as quickly as they can, and return to you for verification.
- 5) Start the timer when you say "Go!" Each team rushes to find their first card.
- 6) When a team thinks they have the correct answer, they come back to you for verification. If they get it right, the teacher keeps the card. If the answer is wrong, they can try again or hide the card back in its original spot and find a new card.
- 7) The game continues until all cards are found or you call time. The team with the most correct answers wins.
- 8) Discuss the game, focusing on the concepts taught on the cards.

Instructions

Cut out the cards below

1) Start at 100, add 50 each time.

100, _____, _____

2) Start at 200, subtract 20 each time.

200, _____, _____

3) Start at 300, add 75 each time.

_____, _____, _____

4) Start at 800, subtract 100 each time.

_____, _____, _____

5) 250, 275, 300,

_____, _____, _____

6) 500, 450, 400, subtract 50 each time.

_____, _____

7) Start at 600, add 100 each time.

_____, _____, _____, _____

8) Pattern Rule: Start at 900, subtract 150 each time.

900, 750, 600,

_____, _____, _____, _____

Instructions

Cut out the cards below

25) A stadium had 1000 fans. 150 leave each hour. How many are left after 4 hours?

26) Pattern Rule: Subtract 250 starting from 950

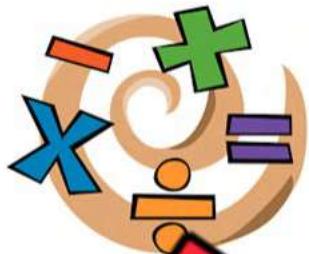
_____ , _____ , _____

27) A movie theater starts with 750 tickets. It sells 150 per day. How many after 5 days?

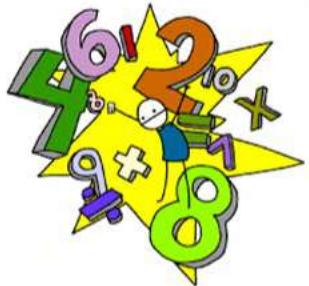
28) (Subtract 250) 1000, 750, 500,

_____ , _____ , _____

29) A warehouse had 900 boxes and removed 120 weekly. How many after 4 weeks?


30) A store sells 250 items a day and increases sales by 40 each day. How many after 5 days?

_____ , _____ , _____


31) A bike rental has 600 bikes. Each month, they add 130. How many after 3 months?

32) A zoo had 750 animals and added 95 each year. How many after 4 years?

Input/Output Table – Addition

Rule: add 5	
In	Out
25	30
55	60
140	145
180	185

Question: Use the rule to complete the input/output tables below

In	Out
0	
20	
30	
50	
120	

Rule: add 4	
In	Out
5	
11	
22	
8	

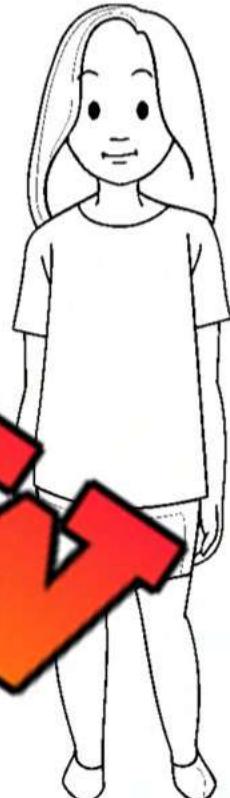
Rule: add 2	
In	Out
2	
18	
49	
92	

In	Out
5	
20	
28	
108	
257	

Rule: add 6	
In	Out
20	
50	
100	
140	

Rule: add 8	
In	Out
2	
5	
10	
20	

Patterning Word Problem - Earnings


Questions

Follow the problem-solving steps below

<input type="checkbox"/> Read the problem carefully	<input type="checkbox"/> Underline important information	<input type="checkbox"/> Draw pictures
<input type="checkbox"/> Write a number sentence	<input type="checkbox"/> Solve the problem	<input type="checkbox"/> Check your answer

Luna worked at a part-time job last week for 6 days. The first day she made \$25 and each day she worked after the first day, she had \$50. After the third day she had \$75.

a) How much cash did she earn in the 6 days of work?

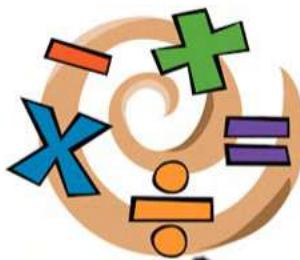
b) How much did she make each day?

Patterning Word Problem - Snowfall

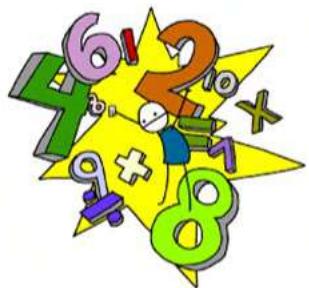
Questions

Follow the problem-solving steps below

<input type="checkbox"/>	Read the problem carefully	<input type="checkbox"/>	Underline important information	<input type="checkbox"/>	Draw pictures
<input type="checkbox"/>	Write a number sentence	<input type="checkbox"/>	Solve the problem	<input type="checkbox"/>	Check your answer


The snow was falling outside Aidan's house. He records the height of the snow each hour. After the 1st hour, it was 200mm. After the 2nd hour, it was 220mm. After the 3rd hour it was 320mm.

a) What will the height of the snow be after the 4th hour?



b) What will the height of the snow be after the 7th hour?

Input/Output Table – Subtraction

Rule: subtract 5	
In	Out
35	30
65	60
130	125
160	155

Question: Complete the input/output tables below

In	Out
5	0
10	
35	
55	
110	

In	Out
5	
25	
57	
100	

In	Out
4	
28	
45	
77	

In	Out
9	
18	
122	
157	

In	Out
6	
14	
47	
138	

In	Out
23	
66	
109	
120	

Patterning Multiplication Word Problems – Reading

Questions**Follow the problem-solving steps below**

<input type="checkbox"/> Read the problem carefully	<input type="checkbox"/> Underline important information	<input type="checkbox"/> Draw pictures
<input type="checkbox"/> Write a number sentence	<input type="checkbox"/> Solve the problem	<input type="checkbox"/> Check your answer

Daniel read 1 page from his book on day one, 2 pages of his book on day two, 4 pages of his book on day three, and 8 pages of his book on day four.

a) How many pages did he read on day 5?

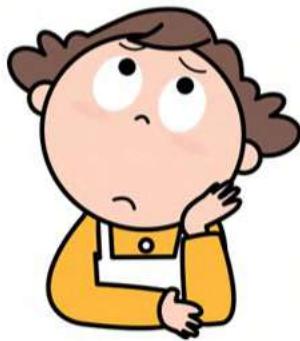
b) How many pages did he read on day 7?

c) What is the pattern rule?

Activity: Finger Signals Quiz - Doubling Patterns

Objective

What are we learning about?

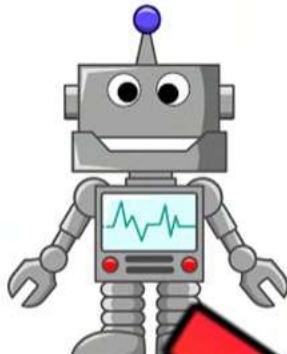

Students will understand and reinforce their knowledge of doubling patterns using multiplication.

Materials What you will need for the activity.

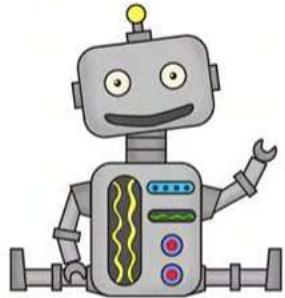
- A list of questions

Instructions

How you will complete the activity



1. Prepare a list of questions with four possible answers labeled A, B, C, and D.
2. Explain the finger signals for each answer in advance: one finger for A, two fingers for B, three fingers for C, and four fingers for D.
3. Inform the students they will show their answer using the finger signal when you read each question.
4. Read the first question aloud clearly and repeat if necessary.
5. Give students a few moments to think about their answer and decide independently.
6. After a countdown (e.g., "3, 2, 1"), have all students show their answer simultaneously by raising the appropriate number of fingers.
7. Reveal the correct answer and explain why it is correct.
8. Repeat with different questions to reinforce understanding of doubling patterns.


Question	A	B	C	D
Start with 6. What is the third number in the doubling pattern?	12	18	24	30
Which number comes next in the pattern: 2, 4, 8, ___?	10	12	14	16
Which pattern starts with 5 and follows a doubling sequence?	5, 10, 15	5, 10, 20	5, 15, 20	5, 10, 25
Start with 1. What is the fifth number in the doubling pattern?	12	24	36	48
If the pattern starts at 4, what will the third number be when doubling?	4	6	8	12
If the pattern starts at 7, what will the fourth number be if it goes 3 times?	14	28	35	42
What is the easiest way to find the next number in a doubling pattern?	Subtract	Multiply	Divide	
Which number comes next in the pattern: 1, 2, 4, ___?	6	8	10	12
What is the second number in the doubling pattern starting with 5?	10			25
Which sequence is a doubling pattern starting with 3?	3, 6, 9	3, 6, 12	3, 9, 12	3, 9, 18
Start with 6. What is the third number in the doubling pattern?	12	18	24	30
Which number comes next in the pattern: 2, 4, 8, ___?	10	12	14	16
Start with 3. What is the fifth number in the doubling pattern?	12	24	36	48
If the pattern starts at 2, what will the third number be when doubling?	4	6	8	12

PREVIEW

Input/Output Table – Division

Rule: divide by 2	
In	Out
10	5
8	4
6	3
4	2

Question: Complete the input/output tables below

Rule: divide by 1	
In	Out
1	0
5	0
10	0
20	0

Rule: divide by 2	
In	Out
6	3
10	5
14	7
2	1

Rule: divide by 3	
In	Out
6	2
9	3
12	4
15	5

Rule: divide by 4	
In	Out
4	1
8	2
16	4
32	8

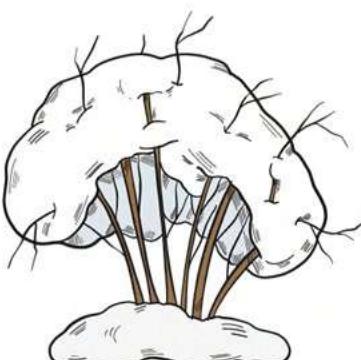
Rule: divide by 5	
In	Out
10	2
20	4
40	8
50	10

Rule: divide by 10	
In	Out
10	1
20	2
50	5
100	10

Patterning Division Word Problems – Melting

Questions**Follow the problem-solving steps below**

<input type="checkbox"/> Read the problem carefully	<input type="checkbox"/> Underline important information	<input type="checkbox"/> Draw pictures
<input type="checkbox"/> Write a number sentence	<input type="checkbox"/> Solve the problem	<input type="checkbox"/> Check your answer


Lincoln was keeping track of the amount of snow in his backyard. After a heavy snowfall, there was 400mm of snow. On day 2, there was 320mm of snow. On day 3, there was 160mm of snow. On day 4, there was 80mm of snow.

a) If the pattern continues, how much snow will be left on day 5?

b) How much snow will be left on day 6?

c) What is the pattern rule?

PREVIEW

Number Strings – Multiplication and Division

Fill in the
Blanks

Fill in the blanks to investigate the patterns between multiplication
and division

Multiplication	Division
$5 \times 1 =$ _____	$5 \div$ _____ = 5
$5 \times 2 =$ 10	_____ $\div 2 = 5$
$5 \times 3 =$ 15	_____ $\div 3 = 5$
$5 \times 4 =$ _____	$20 \div$ _____ = 5
$5 \times 5 =$ _____	$25 \div 5 =$ _____
$5 \times$ _____ = 30	$30 \div$ _____ = 5
$5 \times$ _____ = 35	$35 \div$ _____ = 5
_____ $\times 8 = 40$	$40 \div$ _____ = 5
$5 \times$ _____ = 45	$45 \div$ _____ = 5
$5 \times 10 =$ _____	$50 \div 10 =$ _____

Write

What patterns did you notice when filling out the table?

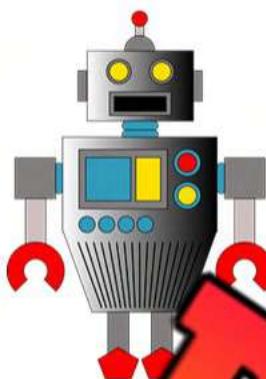
Number Strings – Multiplication and Division

Fill in the
Blanks

Fill in the blanks to investigate the patterns between multiplication
and division

Multiplication	Division
$10 \times 1 =$ _____	$10 \div$ _____ $= 10$
$10 \times 2 =$ _____	$20 \div 2 =$ _____
$10 \times 3 =$ _____	$30 \div 3 =$ _____
$10 \times 4 =$ _____	$40 \div$ _____ $= 10$
$10 \times 5 =$ _____	$50 \div 5 =$ _____
$10 \times$ _____ $= 60$	$60 \div 6 =$ _____
$\underline{\hspace{1cm}} \times 7 = 70$	$70 \div$ _____ $= 10$
$10 \times$ _____ $= 80$	$80 \div 8 =$ _____
$10 \times 9 =$ _____	$90 \div$ _____ $= 10$
$10 \times 10 =$ _____	$100 \div 10 =$ _____

Write


What patterns did you notice when filling out the table?

Pattern Rule – Input/Output Tables

Add 10	
In	Out
20	30
50	60
170	180
225	235

Instructions

Complete the input/output tables below

Rule: subtract 0	
In	Out
10	0
60	0
90	0
155	0

Rule: add 3	
In	Out
3	6
12	15
21	24
30	33

Rule: subtract 6	
In	Out
26	20
38	32
59	53
72	66

Rule: subtract 4	
In	Out
20	16
28	24
108	104
257	253

Rule: Divide by 2	
In	Out
20	10
50	25
100	50
140	70

Rule: Multiply by 3	
In	Out
2	6
5	15
10	30
20	60

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class

Name: _____

Fill in the input/output tables below

Rule: multiply by 3	
In	Out
	3
2	
	15
10	

Rule: divide by 4	
In	Out
	20
2	
	10

Name: _____

Fill in the input/output tables below

Rule: multiply by 3	
In	Out
	3
2	
	15
10	

Rule: divide by 4	
In	Out
	8
20	
	6
10	

Name: _____

Fill in the input/output tables below

Rule: multiply by 3	
In	Out
	3
2	
	15
10	

Rule: divide by 4	
In	Out
	8
20	
	6
10	

Name: _____

Fill in the input/output tables below

Rule: multiply by 3	
In	Out
	3
2	
	15
10	

Rule: divide by 4	
In	Out
	8
20	
	6
10	

Pattern Rule – Input/Output Tables

Part 1

Fill in the input/output tables below

Rule: Subtract 8

In	Out
14	
22	
	58

Rule: Add 13

In	Out
15	
20	
	62

Rule:

In	Out
41	
87	
	121

Rule: Multiply by 2

In	Out
10	
20	
	80

Rule: Divide by 2

In	Out
20	
48	
	31

Rule: Divide by 5

In	Out
20	
	7

Part 2

Write the input/output rules below

In**Out**

2

6

5

9

8

12

15

19

Rule: _____

In**Out**

2

8

3

12

4

16

5

20

Rule: _____

In**Out**

10

7

15

12

25

22

38

35

Rule: _____

T-Tables – Finding Patterns

Questions

Fill in the T-Tables by counting the blocks

1) Figure 1	Figure 2	Figure 3	Figure	Term Value
			1	
			2	
			3	
			4	
2) Figure 1	Figure 2	Figure 3	Figure	Term Value
			1	
			2	
			3	
			4	
3) Figure 1	Figure 2	Figure 3	Figure	Term Value
			1	
			2	
			3	
			4	
4) Figure 1	Figure 2	Figure 3	Figure	Term Value
			1	
			2	
			3	
			4	
5) Figure 1	Figure 2	Figure 3	Figure	Term Value
			1	
			2	
			3	
			4	

Table of Values – Term Numbers/Values

Questions

Fill in the table of values below

Term Number	Term Value
1	1
2	3
3	5
4	
5	
6	

Term Number	Term Value
1	10
2	16
3	22
4	
5	
6	

Term Number	Term Value
1	75
2	71
3	67
4	
5	
6	

Term Number	Term Value
1	89
2	79
3	69
4	
5	
6	

Term Number	Term Value
1	242
2	250
3	
4	266
5	
6	
10	

Term Number	Term Value
1	545
2	540
3	
4	
5	525
6	
10	

Table of Values

Questions

Answer the questions below by using the table of values

When you work an hour, you get paid 10 dollars. Therefore, the input is the hours you work and the output is how much money you made. Fill in the input/output table.

1) How many dollars will you make if you work 5 hours?

2) How many dollars will you make if you worked 10 hours?

Hours Worked	Money Made
1	
2	
3	
4	
5	
10	

Kids	Slices of Pizza
1	
2	
3	
4	
5	
10	

<p>5 friends are having a birthday party for your mom. There are 5 kids coming to the party. Each kid is going to eat 2 slices of pizza.</p> <p>1) How many slices of pizza does your family need to order?</p> <p>2) What if 10 kids show up to the party. How many slices of pizza will you need?</p>	
---	--

You scored 5 points in each basketball game this season. Fill in the table of values showing your game scores.

1) After your third game, how many points had you scored?

2) There were 8 games this season. How many points did you score in the season?

Games	Total Points Scored
1	
2	
3	
4	
5	
8	

The Egg Challenge

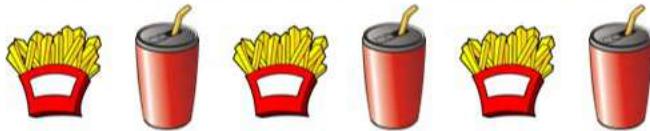
Challenge

Answer the word problem below

If a hen laid 1 egg on Monday, 2 eggs on Tuesday, 3 eggs on Wednesday and the pattern continued, how many eggs would it lay on the Sunday?

PREVIEW

How many days would the hen need to lay 50 eggs?



Name: _____

Algebra Quiz - Patterning

Part 1

Continue the repeating patterns below by drawing 3 more pictures

Part 2

Circle the letter that continues the pattern and continue the pattern

A B C C A B C _____, _____, _____

A B B C D A B B C D _____, _____, _____

A B C B A B C B _____, _____, _____

Part 3

Follow the rule by adding or subtracting to _____ the _____

1) (Add 5)

3, 8, 13, _____, _____, _____

2) (Add 3)

23, 26, 29, _____, _____, _____

3) (Add 6)

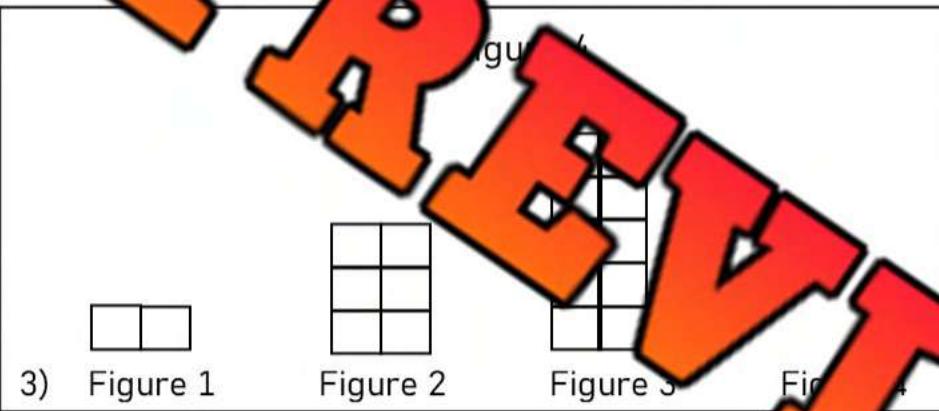
2, 8, 14, _____, _____, _____

4) (subtract 2)

18, 16, 14, _____, _____, _____

5) (subtract 10)

60, 50, 40, _____, _____, _____


6) (subtract 4)

46, 42, 38, _____, _____, _____

Part 4**T-Tables**

Term Number	Term Value	
1	4	+
2	8	+
3	12	+
4		+
5		+
6		+

Term Number	Term Value	
1	89	-
2	79	-
3	69	-
4		-
5		-
6		-

Figure	Term Value
1	
2	
3	
4	

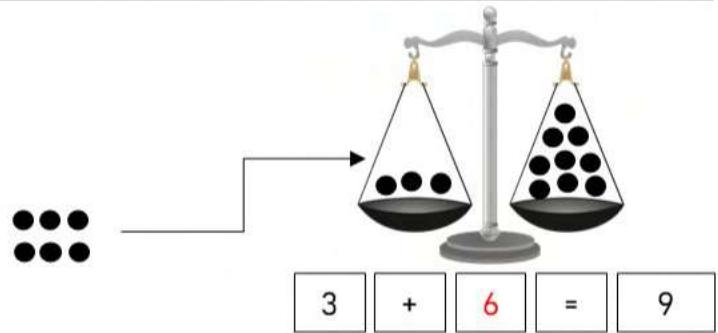
Part 5

Solve the word problem below. Show your work!

If you read 1 book on Monday, 2 books on Tuesday, 3 books on Wednesday, and 4 books on Thursday, how many books would you read on Sunday if the pattern continued?

How many days would it take you to read 45 books?

Grade 3


C2. Equations and Inequalities

	Curriculum Expectations	Pages That Cover the Expectations
C2.1	describe how variables are used, and use them in various contexts as appropriate	110 – 114, 137 – 145, 151 – 155, 161 – 162
C2.2	determine whether given sets of addition, subtraction, multiplication, and division expressions are equivalent or not	95 – 162
C2.3	identify and use equivalent relationships for whole numbers up to 1000, in various contexts	163 – 164

Pre-Algebra – Balancing Addition Equations

Balance the scales by putting the same amount of circles on each scale.

Answer: Add 6 circles to the scale to make them equal.

Questions: How many balls do you need to add to balance the scales?

$$8 + \boxed{\quad} = 11$$

$$6 + \boxed{\quad} = \boxed{9}$$

$$8 + \boxed{\quad} = 14$$

$$5 + \boxed{\quad} = 9$$

$$7 + \boxed{\quad} = 12$$

$$2 + \boxed{\quad} = 13$$

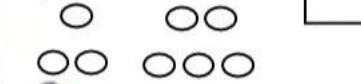
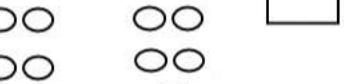
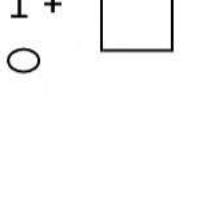
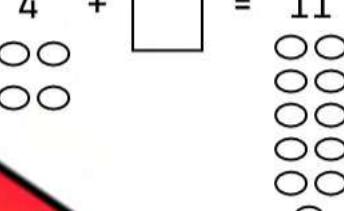
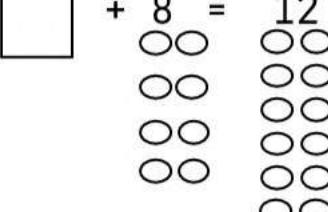
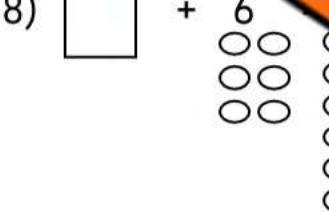
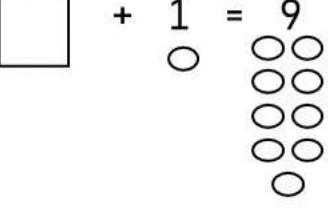
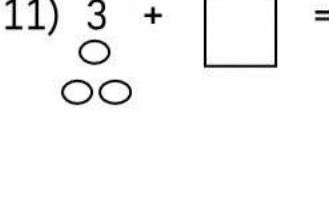
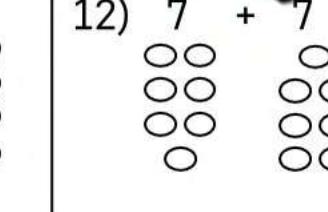
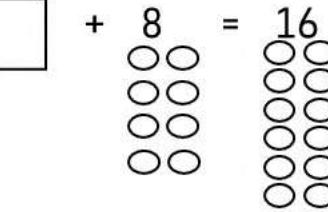
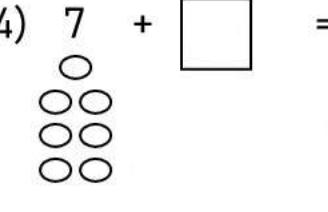
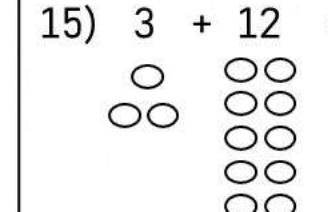
$$6 + \boxed{\quad} = 10$$

$$3 + \boxed{\quad} = 14$$

$$1 + \boxed{\quad} = 12$$

Pre-Algebra – Balancing Addition Equations

Balancing equations means both sides of the equal sign must be the same.













$$\begin{array}{c} 10 \\ \swarrow \quad \searrow \\ 3 + 7 = \boxed{10} \end{array}$$

Examples:

$$\begin{array}{c} 30 \\ \swarrow \quad \searrow \\ 24 + 6 = \boxed{30} \end{array}$$

Questions

Fill in the missing number to balance the equation

1) $3 + \boxed{\quad} = 10$ 	2) $3 + \boxed{\quad} = 8$ 	3) $6 + \boxed{\quad} = 11$
4) $1 + \boxed{\quad} = 7$ 	5) $4 + \boxed{\quad} = 10$ 	6) $4 + \boxed{\quad} = 11$
7) $\boxed{\quad} + 8 = 12$ 	8) $\boxed{\quad} + 6 = 12$ 	9) $\boxed{\quad} + 7 = 12$
10) $\boxed{\quad} + 1 = 9$ 	11) $3 + \boxed{\quad} = 8$ 	12) $7 + \boxed{\quad} = 14$
13) $\boxed{\quad} + 8 = 16$ 	14) $7 + \boxed{\quad} = 11$ 	15) $3 + 12 = \boxed{\quad}$

Addition to 100 – Are They Equal?

Are the equations equal? Put a slash through the equal sign for any equations that are not equal

$15 + 7 = 22$

$28 + 4 \neq 33$

$44 + 6 = 50$

Questions

Put a slash (\neq) through the equal sign if it is not balanced

1) $15 + 5$

2) $17 + 4 = 21$

3) $23 + 7 = 29$

4) $21 + 6 = 27$

5) $23 + 10 = 33$

6) $19 + 6 = 26$

7) $26 + 5 = 31$

8) $7 + 7 = 46$

9) $58 + 6 = 66$

10) $61 + 5 = 66$

11) $7 + 8 = 90$

12) $60 + 10 = 70$

13) $81 + 0 = 81$

14) $84 + 3 = 88$

15) $90 + 7 = 96$

16) $94 + 5 = 99$

17) $87 + 10 = 97$

Pre-Algebra – Balancing Addition Equations

Balancing equations means both sides of the equal sign must be the same.

$$\begin{array}{r} 10 \\ \swarrow \searrow \\ 3 + 7 = \boxed{10} \end{array}$$

Examples:

$$\begin{array}{r} 30 \\ \swarrow \searrow \\ 24 + 6 = \boxed{30} \end{array}$$

Questions

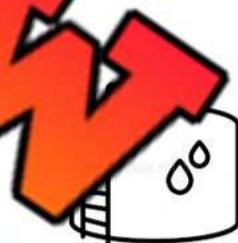
Fill in the missing number to balance the equation

1) $15 + \boxed{ } = 20$ 2) $23 + 6 = \boxed{ }$ 3) $54 + 5 = \boxed{ }$ 4) $1 + \boxed{ } = 8$ $= 15$ $26 + \boxed{ } = 32$ 7) $\boxed{ } + 6 = 10$ 8) $17 + \boxed{ } = 31$ $\boxed{ } + 33 = 50$ 10) $35 + 13 = \boxed{ }$ 11) $52 + \boxed{ } = 61$ $\boxed{ } + 78 = 81$ 13) $124 + \boxed{ } = 131$ 14) $96 + 5 = \boxed{ }$ $184 + \boxed{ } = 197$ 16) $152 + \boxed{ } = 162$ 17) $135 + 15 = \boxed{ }$ $113 + \boxed{ } = 125$ 19) $144 + \boxed{ } = 152$ 20) $118 + 12 = \boxed{ }$ $151 + \boxed{ } = 165$

PREVIEW

Addition Word Problems

Questions**Answer the questions below**


1) Tom and his friend collected 35 seashells together. If Tom collected 18 seashells, how many did his friend collect?

2) There were 12 birds in a tree. Some more birds arrived, and now there are 56 birds. How many birds arrived?

3) A water tank had 75 liters of water. Some more water was added, and now it has 98 liters. How much water was added?

4) A bus started with 25 passengers. More people got on, and now there are 39 passengers. How many people got on?

Pre-Algebra – Change Unknown

Balancing equations means both sides of the equal sign must be the same.

Examples:

$$\begin{array}{r} 10 \\ \swarrow \\ 3 + 7 = 10 \end{array}$$

$$\begin{array}{r} 30 \\ \swarrow \\ 22 + 8 = 30 \end{array}$$

Questions

Fill in the missing number to balance the equation

1) $5 + \underline{\hspace{1cm}} =$	2) $3 + \underline{\hspace{1cm}} = 7$
3) $7 + \underline{\hspace{1cm}} =$	$\underline{\hspace{1cm}} = 14$
5) $12 + \underline{\hspace{1cm}} = 17$	6) $\underline{\hspace{1cm}} + 5 = 22$
7) $18 + \underline{\hspace{1cm}} = 25$	8) $15 + \underline{\hspace{1cm}}$
9) $13 + \underline{\hspace{1cm}} = 18$	10) $17 + \underline{\hspace{1cm}} = 24$
11) $25 + \underline{\hspace{1cm}} = 32$	12) $31 + \underline{\hspace{1cm}} = 38$
13) $44 + \underline{\hspace{1cm}} = 51$	14) $53 + \underline{\hspace{1cm}} = 62$

Pre-Algebra – Start Unknown

Balancing equations means both sides of the equal sign must be the same.

Examples:

$$\begin{array}{r} 17 \\ \swarrow \\ 10 + 7 = 17 \end{array}$$

$$\begin{array}{r} 30 \\ \swarrow \\ 7 + 23 = 30 \end{array}$$

Questions

Fill in the missing number to balance the equation

1) _____	2) _____ + 2 = 8
3) _____ + 6 = _____	_____ + 5 = 7
5) _____ + 9 = 13	6) _____ + 13 = _____
7) _____ + 7 = 15	8) _____ + _____
9) _____ + 6 = 24	10) _____ + 5 = 28
11) _____ + 5 = 25	12) _____ + 7 = 32
13) _____ + 11 = 43	14) _____ + 13 = 48

Algebra Jeopardy

Objective**What are we learning about?**

To reinforce students' understanding of basic algebraic concepts and their application to solve simple equations and word problems in a fun and competitive game for

Mat

What you will need for the activity.

- Jeopardy board (on the next page)
- Buzzer or bell

Instructions**How you will complete the activity**

1. Print the Jeopardy board on the next page.
2. Divide the class into two teams.
3. Ask one team to go first by selecting a dollar value.
4. Read the question aloud from the dollar value.
5. The first team to ring the bell or buzzer gets to answer.
6. If they answer correctly, award them the points. If not, another team can answer.
7. Continue the game until all questions have been answered.
8. Tally the points to determine the winning team.
9. Conclude by discussing what they learned about the topic in the questions.

Jeopardy Questions

Ask students the questions below

\$100	\$200	\$300	\$400	\$500
$\underline{\quad} + 3 = 5$	$\underline{\quad} + 7 = 20$	$10 + \underline{\quad} = 45$	$20 + \underline{\quad} + 15 = 68$	$3 + \underline{\quad} = 7 + 5$
$\underline{\quad} + 15 = \underline{\quad}$	$\underline{\quad} + 12 = 29$	$18 + \underline{\quad} = 53$	$25 + 18 + \underline{\quad} = 100$	$\underline{\quad} + 18 = 50 + 13$
$7 + \underline{\quad} = 10$	$\underline{\quad} + \underline{\quad} = 65$	$32 + 25 + \underline{\quad} = 95$	$4 + \underline{\quad} = 11 + 9$	
$\underline{\quad} + 6 = 9$	$\underline{\quad} + 20 = 40$	$\underline{\quad} + 22 + \underline{\quad} = 58$	$29 + \underline{\quad} = 12 + 47$	
Sam has 6 marbles and finds 11 more. How many does he have now?	Lisa had \$21 and earned \$10 more. Total money?	Max had 30 pencils, he bought 26 more. How many total pencils does he have now?	A bird flew in and joined 5 more joining the tree. How many now sit on the tree?	farmer had 62 and bought 5 more. How many now have?
If Alex has 12 apples and buys 12 more, how many does he have?	Jane had 24 candies and found 13 more. How many does she now have in total?	Tom read 33 pages, then read 22 more. How many total pages did he read?	Lily collected 41 seashells, then 23 more. How many total does she have now?	If a baker baked 68 pies and then baked 24 more, how many pies are there?

Addition – Which Equation Matches?

Two of the equations equal the same number. Which one matches the shaded in equation.

Example:

4 + 7	9 + 2	5 + 5
-------	-------	-------

Questions: Circle the equation that matches the shaded in equation

1)	25 + 10	16 + 12	24 + 5
----	---------	---------	--------

2)	46 + 6	40 + 10	44 + 3
----	--------	---------	--------

3)	52 + 14	57 + 18	61 + 5
----	---------	---------	--------

4)	63 + 12	45 + 35	58 + 10
----	---------	---------	---------

5)	82 + 12	70 + 24	55 + 40
----	---------	---------	---------

6)	68 + 13	75 + 7	61 + 20
----	---------	--------	---------

7)	53 + 22	40 + 35	55 + 21
----	---------	---------	---------

Addition – Using Symbols

When we do not know the value of an addend in a question, we can use any symbol to replace the unknown.

Part 1

Find out the value of the symbol

1) $35 + \square = 50$
=

2) $17 + \bigcirc = 24$
=

3) $\bullet + 42 = 55$
=

4) $27 + \triangle = 38$
=

5) $11 + \square = 16$
=

6) $65 + \bigcirc = 75$
=

7) $\diamond + 88 = 98$
=

8) $51 + \triangle = 62$
=

9) $\bullet + 72 = 81$
=

Part 2

Write your own questions using any symbol you want to answer.

1)

2)

Using Variables to Solve Addition Equations

There are some instances where we know the values of variables and need to plug them into an equation. For example:

$$a + b + c = ?$$

$$5 + 3 + 7 = 15$$

$$a = 5$$

$$b = 3$$

$$c = 7$$

Questions: Find out the value of the variable

$$a + b + c = ?$$

$$a = 8 \quad b = 12 \quad c = 2$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$n + y + t = ?$$

$$n = 5 \quad y = 10 \quad t = 5$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$c + r + p = ?$$

$$c = 4 \quad r = 12 \quad p = ?$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$g + h + k = ?$$

$$g = 8 \quad h = 4 \quad k = 8$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$e + c + g = ?$$

$$e = 13 \quad c = 7 \quad g = 10$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$a + b + c = ?$$

$$a = 6 \quad b = 8 \quad c = 3$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$a + b + c = ?$$

$$a = 5 \quad b = 12 \quad c = 12$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$n + y + t = ?$$

$$n = 5 \quad y = 10 \quad t = 5$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$c + r + p = ?$$

$$c = 4 \quad r = 8 \quad p = 21$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$g + h + k = ?$$

$$g = 8 \quad h = 10 \quad k = 10$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$e + c + g = ?$$

$$e = 13 \quad c = 15 \quad g = 10$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

$$a + b + c = ?$$

$$a = 5 \quad b = 15 \quad c = 20$$

$$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$$

Word Problems – Writing Addition Equations

Questions

Answer the questions below

1) Steve and James love video games. Steve has 8 games. Steve and James have 18 games in total. Which equation will tell us how many games James has?

$$j + 8 = 18$$

$$8 + j = 18$$

$$8 + j = 18$$

$$8 - j = 18$$

2) Jen and Rebecca are baking cookies. Rebecca made 20 cookies. They made 50 total cookies. Which equation will tell us how many cookies Jen made?

$$c - 20 = 50$$

$$20 - c = 50$$

$$50 + c = 20$$

$$c - 20 = 50$$

3) Scott and Luke love hockey cards. Scott has 25 cards and Luke has 50 cards. Which equation will tell us how many total cards they both have?

$$c + 25 = 50$$

$$25 + c = 50$$

$$25 + c = 50$$

$$25 - c = 50$$

4) Adam and Henry went Trick or Treating. Henry got 62 candies. They got 121 candies in total? Which equation will tell us how many candies Adam got?

$$62 + c = 121$$

$$c + 62 = 121$$

$$62 + 121 = c$$

$$121 - 62 = c$$

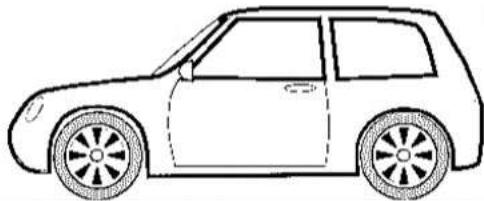
5) Sam scored 15 points in his basketball game. He had 5 points in the first half. Which equation will tell us how many points he had in the second half?

$$p + 5 = 15$$

$$5 - p = 15$$

$$5 + p = 15$$

$$15 - p = 5$$

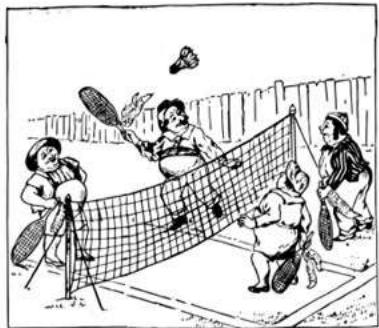


Word Problems – Solving Addition Equations

Questions**Answer the questions below**

1) Tim drove 31km to get to work. Then he drove to the store. When he got to the store, he had driven 58 km in total. How many km did he drive to the store?

PREVIEW



2) Steve got 25 points for beating level 1 of a video game. He got 33 more points for beating level 2. How many total points does he have after level 2?

Bonus – He had 78 total points after beating level 3. How many points did he get in level 3?

3. In badminton, Jessica and Erin won their game. They scored 21 points and their opponents only scored 16. Jessica scored 13 of the 21 points. How many points did Erin score?

Pre-Algebra – Balancing Subtraction Equations

Balance the scales by taking away circles from the scale.

Answer: take 4 circles from the scale to make them equal.

$$7 \quad - \quad 4 \quad = \quad 3$$

Instructions: How many balls do you need to take away to balance the scales?

$$11 \quad - \quad \boxed{\quad} \quad = \quad 8$$

$$8 \quad - \quad \boxed{\quad} \quad = \quad 5$$

$$10 \quad - \quad \boxed{\quad} \quad = \quad 4$$

$$8 \quad - \quad \boxed{\quad} \quad = \quad 1$$

$$11 \quad - \quad \boxed{\quad} \quad = \quad 3$$

$$13 \quad - \quad \boxed{\quad} \quad = \quad 2$$

$$10 \quad - \quad \boxed{\quad} \quad = \quad 4$$

$$14 \quad - \quad \boxed{\quad} \quad = \quad 1$$

$$4 \quad - \quad \boxed{\quad} \quad = \quad 0$$

Activity Title: Balancing Act

Objective

What are we learning about?

This activity is designed to help students understand the concept of equality and balance in addition and subtraction equations using a physical balance scale. Students will explore how different weights can represent numbers and discover combinations that balance the scale.

Mater... What you will need for the activity.

- Small balance scales
- A set of weights for objects of the same weights. A minimum of 25 weights per group.
- Paper
- Pencils
- Set of pre-written addition and subtraction problems

Instructions

How you will complete the activity

1. Give a balance scale and weights to small groups of students.
2. Provide the students with the set of equations on the next page.
3. Students must use the weights to represent the numbers in each equation and place them on the balance scale to see how they balance. For the subtraction questions, students will put on the first quantity, and then remove the quantities in the equations. For addition, they can put the addends in separate areas on the same side of the balance scale.
4. As an extension, students could create their own equations that represent a sum or difference that you provide them with.
5. Review each group's findings with the class, discussing why the particular combinations resulted in a balanced scale.

Equations

Pre-written addition and subtraction problems

$3 + 2 = 5$

$11 - 4 = 7$

PREVIEW

$7 + 5 = 12$

$4 + 2 = 3 + 3$

$5 + 4 = 7 + 2$

$18 - 15 = 4$

$8 - 4 - 2 = 2$

$19 - 7 - 8 = 8 - 2 - 2$

$7 + 2 + 1 = 9 + 1$

$6 + 1 + 3 = 4 + 2 + 4$

Subtraction to 50 – Are They Equal?

Are the equations equal? Put a slash through the equal sign for any equations that are not equal

$14 - 3 = 11$

$22 - 3 \neq 18$

$36 - 5 = 31$

Questions

Put a slash \neq through the equal sign if it is not balanced

1) $13 - 2 =$

2) $24 - 4 = 20$

3) $15 - 4 = 10$

4) $16 - 3 = 12$

5) $18 - 3 = 14$

7) $22 - 5 = 17$

8) $26 - 6 = 20$

10) $28 - 5 = 23$

11) $31 - 3 = 27$

12) $34 - 4 = 30$

13) $36 - 5 = 31$

14) $39 - 4 = 34$

15) $37 - 4 = 33$

16) $44 - 0 = 44$

17) $46 - 6 = 41$

18) $50 - 5 = 45$

Pre-Algebra – Balancing Subtraction Equations

Balancing equations means both sides of the equal sign must be the same.

$$\begin{array}{r} 9 \\ \swarrow \quad \searrow \\ 15 - 6 = \boxed{9} \end{array}$$

Examples:

$$\begin{array}{r} 21 \\ \swarrow \quad \searrow \\ 27 - 6 = \boxed{21} \end{array}$$

Questions

Fill in the missing number to balance the equation

1) $15 - \boxed{6} = 9$

2) $11 - 6 = \boxed{5}$

3) $10 - 5 = \boxed{5}$

4) $10 - \boxed{5} = 5$

$$\begin{array}{r} \boxed{14} - 8 = 6 \\ - \quad \quad \quad - \\ \hline \end{array}$$

6) $14 - \boxed{4} = 10$

7) $\boxed{16} - 6 = 10$

8) $\boxed{7} - 5 = 12$

$$\begin{array}{r} \boxed{20} - 8 = 12 \\ - \quad \quad \quad - \\ \hline \end{array}$$

10) $55 - 10 = \boxed{45}$

11) $72 - \boxed{17} = 55$

13) $74 - \boxed{7} = 67$

14) $112 - 6 = \boxed{106}$

15) $180 - \boxed{20} = 160$

16) $143 - \boxed{8} = 135$

17) $115 - 15 = \boxed{100}$

18) $125 - \boxed{15} = 110$

19) $106 - \boxed{7} = 99$

20) $125 - 21 = \boxed{104}$

21) $145 - \boxed{45} = 100$

Pre-Algebra – Result Unknown

Balancing equations means both sides of the equal sign must be the same.

Examples:

$$\begin{array}{r} 3 \\ \swarrow \quad \searrow \\ 10 - 7 = 3 \end{array}$$

$$\begin{array}{r} 6 \\ \swarrow \quad \searrow \\ 24 - 18 = 6 \end{array}$$

Question: Fill in the missing number to balance the equation

1) $15 - 5 =$ _____	2) $25 - 7 =$ _____
3) $10 - 4 =$ _____	4) $13 -$ _____
5) $21 - 7 =$ _____	6) $24 -$ _____
7) $32 - 12 =$ _____	8) $42 - 7 =$ _____
9) $63 - 13 =$ _____	10) $79 - 15 =$ _____
11) $91 - 11 =$ _____	12) $122 - 9 =$ _____
13) $142 - 13 =$ _____	14) $166 - 15 =$ _____

Pre-Algebra – Start Unknown

Balancing equations means both sides of the equal sign must be the same.

Examples:

$$\begin{array}{c} 10 \\ \diagup \\ 17 - 7 = 10 \end{array}$$

$$\begin{array}{c} 7 \\ \diagup \\ 30 - 23 = 7 \end{array}$$

Question: Fill in the missing number to balance the equation

1) _____ - 7 = 10	2) _____ - 4 = 7
3) _____ - 5 = 10	4) _____ - 3 = 8
5) _____ - 7 = 13	6) _____ - 6 = 2
7) _____ - 4 = 15	8) _____ - 3 =
9) _____ - 6 = 24	10) _____ - 5 = 25
11) _____ - 8 = 25	12) _____ - 9 = 40
13) _____ - 12 = 43	14) _____ - 13 = 62

Subtraction – Which Equation Matches?

Two of the equations equal the same number. Which one matches the shaded in equation.

Example:

9 - 4	8 - 3	10 - 6
-------	-------	--------

Question: Circle the equation that matches the shaded in equation

1)		24 - 13	27 - 15
2)	28 - 14		27 - 13
3)	30 - 12	39 - 18	39 - 21
4)	47 - 12	46 - 11	
5)	62 - 13	61 - 12	63 - 15
6)	85 - 15	90 - 15	90 - 20
7)	99 - 15	98 - 13	90 - 6

Matching Game: Do The Equations Match

Objective**What are we learning about?**

To enhance students' understanding of equality within addition and subtraction equations. Students will identify and match pairs of equations that yield the same result, fostering critical thinking and problem-solving skills in a collaborative group setting.

Materials: You will need for the activity.

- Pre-prepared pre-cut matching cards.
- Small bags or envelopes to hold the materials for each group

Instructions**How you will complete the activity**

1. Before the class, the teacher will cut out the pre-prepared matching game cards.
2. Divide the students into small groups and give each group a bag or envelope containing a set of the matching cards.
3. In their groups, students will spread out the cards face down on their table.
4. Each person takes a turn to try to match two cards. They will need to solve both equations to see if they match (equal the same).
5. If they find a correct match, they keep the cards out and continue with their next turn. If the cards don't match, they turn them back over in the same place, and the next player takes a turn.
6. The activity continues until all pairs are correctly matched within each group.

Cards

Matching Game Cards

$19 + 18$

$30 + 7$

PREVIEW

$42 + 18$ $68 - 3$

$90 - 45$ $75 - 3$

$64 + 18$ $73 + 9$

Subtraction – Using Symbols

Part 1

Find out the value of the symbol

1) $\bullet - 10 = 18$

$\bullet =$

2) $42 - \blacktriangle = 30$

$=$

3) $80 - \bullet = 65$

$\bullet =$

4) $\blacktriangle - 12 =$

$\blacktriangle =$

5) $\blacklozenge - 11 = 29$

$=$

6) $90 - 70 = \blacklozenge$

$=$

7) $54 - \blacktriangle = 50$

$\blacktriangle =$

8) $\bullet -$

9) $78 - \bullet = 64$

$\bullet =$

Part 2

Write your own questions using any symbols you want. Then get a friend to answer.

1)

2)

3)

4)

Subtraction – Find the Variable

A **variable** is a letter that represents an unknown number. When we don't know a number, we can use a letter to take the place of the unknown number.

Example: $18 - n = 5$

We can figure out the unknown number by balancing the equation.
In this equation, $n = 13$.

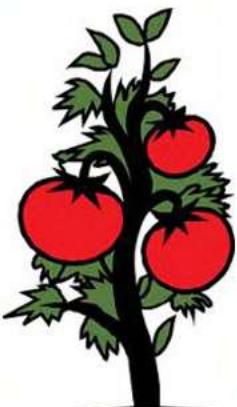
Question: What is the value of the variable

$27 - n = 12$ $n =$	$n - 5 = 5$ $n =$	$22 - n = 10$ $n =$
$25 - 10 = p$ $p =$	$14 - p = 6$ $p =$	$p - 8 = 15$ $p =$
$31 - y = 30$ $y =$	$y - 14 = 6$ $y =$	$35 - y = 30$ $y =$
$65 - t = 51$ $t =$	$88 - t = 58$ $t =$	$74 - t = 66$ $t =$
$124 - a = 117$ $a =$	$150 - a = 135$ $a =$	$163 - a = 151$ $a =$
$176 - 165 = s$ $s =$	$185 - s = 171$ $s =$	$124 - s = 99$ $s =$

Word Problems – Solving Subtraction Equations

Questions**Answer the questions below**

1) Mrs. Wilson had 48 pencils at the start of the school year. She gave all the kids in her class 1 pencil. She now has 28 pencils. How many students are in Mrs. Wilson's class?



2) Hudson saved 86 dollars and bought a toy for 35 dollars. How many dollars does he have left?

Bonus: He saved 15 more dollars. Can he buy a new toy that costs 70 dollars?

3) The grade 3 class planted 79 tomato seeds but only 57 tomato plants grew. How many plants did not grow?

Task Cards: Mystery Number Detectives

Objective**What are we learning about?**

To help students understand and solve one-step algebraic equations by finding the value of a missing number.

Materials**What you will need for the activity.**

- 2 sets of task cards
- Separate sheet for answers
- Pencils

1 2 3 4 5
6 7 8 9 0

Instructions**How to implement the activity**

1. Introduce the concepts covered in the task cards.
2. Organize the students into pairs and provide each pair with their sets of task cards.
3. Give each pair an answer recording sheet to record down their responses.
4. Encourage teamwork by having students collaborate within their pairs on finding solutions.
5. Allow students to select any task card to begin with, emphasizing that they can complete the cards in any order they prefer.
6. Instruct students to record the letter of their chosen answer (A, B, or C) on their answer sheet beside the task card's number.
7. Consider using a timer to create a dynamic challenge, adjusting the duration to fit the lesson's objectives and complexity.
8. After the activity, review the answers collectively, discussing any challenging questions and strategies used to solve them.
9. Have students reflect on the activity, sharing the methods they applied and obstacles they overcame.

Task Cards

Cut out the task cards below

Card 1:

$$14 - p = 10$$

solve for p

- a) 11
- b) 4
- c) 5

Card 2:

$$80 - \textcolor{red}{\bullet} = 65$$

solve for $\textcolor{red}{\bullet}$

- a) 15
- b) 25
- c) 35

PREVIEW

Card 5:

$$31 + y = 58$$

solve for y

- a) 17
- b) 27
- c) 37

Card 4:

$$x + 45 = 76$$

solve for x

- a) 11
- b) 31
- c) 41

Card 7:

$$18 - a = 9$$

solve for a

- a) 9
- b) 7
- c) 11

Card 8:

$$b + 16 = 24$$

solve for b.

- a) 8
- b) 18
- c) 28

Task Cards: Mystery Number Detectives

Answers

Record your answers below

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

Multiplication – Which Equation Matches?

Two of the equations equal the same number. Which one matches the shaded in equation

Example

2×3

1×6

4×2

Questio

Circle the equation that matches the shaded in equation

1)

10×1

6×2

2)

6×3

2×9

3)

5×4

6×3

4)

8×2

4×4

5)

9×4

7×5

6×6

6)

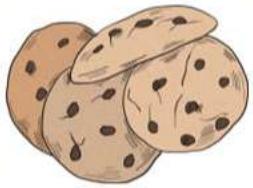
10×3

7×5

6×5

7)

8×3


6×4

7×3

Multiplication Word Problems

Questions**Answer the questions below**

1) Claire has 7 boxes of cookies. She has 56 cookies in total. How many cookies are in each box?

2) Sam is a truck driver. He drives 100 km per hour. In total, he drove 800 km yesterday. How many hours did he drive?

3) Courtney scored 3 goals in each game she played. If Courtney scored 27 goals in total. How many games did she play?

4) Steven earned \$8 every hour he worked. He made \$48 today. How many hours did he work?

Multiplication – Using Symbols

Part 1

Find out the value of the symbol

1) $\bullet \times 3 = 12$	2) $5 \times \blacktriangle = 45$ $\blacktriangle =$	3) $4 \times \bullet = 32$ $\bullet =$
4) $\blacktriangle \times 9 =$ $\blacktriangle =$	5) $\lozenge \times 4 = 40$ $\lozenge =$	6) $7 \times 10 = \lozenge$ $\lozenge =$
7) $2 \times \blacktriangle = 40$ $\blacktriangle =$		9) $10 \times \bullet = 110$ $\bullet =$

Part 2

Write your own questions using any symbol you want in get a friend to answer.

1)	2)
3)	4)

Multiplication – Find the Variable

When we multiply a number by a variable, we do not need to use the multiplication sign. It is known that any variable next to a number means the operation we are using is multiplication.

Example: $5n = 15$ means $5 \times n = 15$

We can figure out the unknown number by balancing the equation: $n = 3$.

Question

Find out the value of the variable

$n \times 5 = 20$

$n =$

$10 \times 1 = p$

$5p = 30$

$p =$

$p =$

$10n = 30$

$n =$

$n =$

$2n = 16$

$n =$

$8 \times s = t$

$t =$

$5n = 45$

$10n = 100$

$n =$

$n =$

$10s = 50$

$5 \times 7 = s$

$s =$

$s =$

Activity – Equation Explorers

Objective**What are we learning about?**

To help students understand and solve one-step equations using symbols to represent unknown values.

Materials**What you will need for the activity.**

- Small whiteboards or sheets of paper
- Dry erase markers or pens
- A set of equation cards (one-step equations like $3n = 6$)
- Tokens or small rewards

Instructions**How you will complete the activity**

1. Begin the activity by explaining what a one-step equation is and demonstrate a few examples on the board. Explain that the symbol (like x, s, n) is for an unknown value that we need to find.
2. Distribute a paper and pencil to each student.
3. Hand out one equation card to each student. Ensure the questions are easy but remain simple enough to solve in one step.
4. Give the students a few minutes to solve the equation on their cards, writing the solution on their paper.
5. Once everyone has a solution, ask students to swap their boards or papers with a partner to check each other's work.
6. Discuss as a class some of the solutions, especially any that were tricky or where mistakes were made, to clarify the correct methods.
7. For correctly solved equations, award tokens or small rewards to encourage participation and effort.

Multiplication Equations

Cut out the questions below and distribute to each student.

$12a = 36$

$11b = 44$

$15c = 45$

$13d = 52$

$14e = 56$

$16f = 64$

$12j = 48$

$17h = 68$

$19i = 76$

$15m = 60$

$22p = 66$

$23s = 46$

$16v = 64$

$13y = 39$

$20b = 100$

$24k = 80$

$25q = 75$

$19t = 57$

$17w = 51$

$21z = 84$

$12c = 36$

$11l = 33$

$21o = 63$

$24n = 72$

$14x = 42$

$22a = 44$

$15d = 75$

PREVIEW

Division – Are They Equal?

Are the equations equal? Put a slash through the equal sign for any equations that are not equal

$4 \div 2 \neq 1$

$6 \div 2 = 3$

$10 \div 2 \neq 8$

Question:

Put a slash through the equal sign (\neq) if it is not balanced

PREVIEW

1)

$2) 10 \div 10 = 10$

3)

$4) 8 \div 2 = 4$

$5) 10 \div 5 = 2$

$6) \div 1 = 2$

$7) 10 \div 5 = 50$

$9) 20 \div 5 = 4$

$10) 25 \div 5 = 6$

$11) 50 \div 10 = 5$

$12) 16 \div 2 = 7$

$13) 20 \div 10 = 2$

$14) 15 \div 5 = 5$

Pre-Algebra – Balancing Division Equations

Balancing equations means both sides of the equal sign must be the same.

$$\begin{array}{c} 5 \\ \swarrow \quad \searrow \\ 15 \div 3 = \boxed{5} \end{array}$$

Examples:

$$\begin{array}{c} 5 \\ \swarrow \quad \searrow \\ \boxed{10} \div 2 = 5 \end{array}$$

Questions

Fill in the missing number to balance the equation

1) $8 \div \boxed{4} = 2$ 2) $6 \div 3 = \boxed{2}$ 3) $10 \div \boxed{5} = 2$ 4) $6 \div \boxed{3} = 2$ 5) $\boxed{25} \div 5 = 5$ 6) $\boxed{10} \div 2 = 5$ 7) $5 \div 1 = \boxed{5}$ 8) $20 \div \boxed{10} = 2$ 9) $15 \div \boxed{5} = 3$ 10) $10 \div 10 = \boxed{1}$ 11) $25 \div \boxed{5} = 5$ 12) $30 \div 6 = \boxed{5}$ 13) $10 \div \boxed{5} = 2$ 14) $18 \div 2 = \boxed{9}$

Division – Which Equation Matches?

Two of the equations equal the same number. Which one matches the shaded in equation

Example

$12 \div 4$

$9 \div 3$

$16 \div 4$

Question

Circle the equation that matches the shaded in equation

1)

$20 \div 4$

$10 \div 5$

$15 \div 3$

2)

$18 \div 6$

$6 \div 3$

3)

$16 \div 4$

$14 \div 7$

$28 \div 7$

4)

$25 \div 5$

$10 \div 2$

5)

$28 \div 7$

$21 \div 3$

$8 \div 2$

6)

$18 \div 3$

$30 \div 5$

$25 \div 5$

7)

$24 \div 3$

$16 \div 2$

$12 \div 6$

Division – Using Symbols

Part 1

Find out the value of the symbol

1) $\bullet \div 3 = 5$	2) $25 \div \blacktriangle = 5$ $\blacktriangle =$	3) $40 \div \bullet = 8$ $\bullet =$
4) $\triangleright \div 2 =$ $\blacktriangle =$	5) $\blacklozenge \div 6 = 4$ $\blacklozenge =$	6) $50 \div 10 = \blacklozenge$ $\blacklozenge =$
7) $42 \div \blacktriangle = 6$ $\blacktriangle =$		9) $90 \div \bullet = 9$ $\bullet =$

Part 2

Write your own questions using any symbol you want. Then give me the answer.

1)	2)
3)	4)

Division – Find the Variable

A **variable** is a letter that represents an unknown number. When we don't know a number, we can use a letter to take the place of the unknown number.

Example: $15 \div n = 3$

We can figure out the unknown number by balancing the equation: $n = 5$.

Question

Find out the value of the variable

PREVIEW	$n \div 5 = 3$ $n =$
$10 \div 1 = p$ $p =$	$20 \div p = 2$ $p =$
$10 \div n = 2$ $n =$	$n \div 2 = 10$ $n =$
$30 \div n = 10$ $n =$	$8 \div t = 2$ $t =$
$50 \div n = 5$ $n =$	$10 \div n = 10$ $n =$
$10 \div s = 2$ $s =$	$20 \div 4 = s$ $s =$

Name: _____

Algebra Quiz - Equations

Part 1

Put an x through the equal sign if it is not balanced

1) $15 + 10 = 25$

2) $20 + 10 = 30$

3) $56 + 5 = 71$

4) 10

5) $10 - 4 = 6$

6) $16 - 5 = 12$

Part 2

Find the missing number to balance the equation

1) $15 + 8 =$

$7 = 21$

3) $9 +$

$= 15$

4) $25 + 5 =$

5) $\square + 12 =$

$7 +$

$= 28$

7) $15 - 8 =$

8) $\square - 8 = 12$

$10 -$

$\square =$

10

10) $21 - 5 =$

11) $\square - 4 = 16$

$12 -$

$32 - 15 =$

13) $5 \times 2 =$

14) $10 \times$

$\square = 30$

15) $25 \div$

$= 5$

16) $30 \div 6 =$

Part 3

Find out the value of the variable

$7 + n = 10$

$n =$

$n - 5 = 5$

$n =$

$2 \times n = 10$

$n =$

$20 \div n = 10$

$n =$

$n + 16 = 22$

$n =$

$n - 3 = 6$

$n =$

$n \times 5 = 15$

$n =$

$12 \div 4 = n$

$n =$

Part 4

Find out the value of the variable

$a + b + c =$

$\underline{\quad} + \underline{\quad} + \underline{\quad}$

$n + y + t =$

$n = 5 \quad y = 10 \quad t = 5$

$\underline{\quad} + \underline{\quad} + \underline{\quad} = \underline{\quad}$

$a - b = c$

$a = 13 \quad b =$

$\underline{\quad} + \underline{\quad} = \underline{\quad}$

$c =$

$a \times b = c \quad a = 5 \quad b = 5$

$\underline{\quad} \times \underline{\quad} = c$

$c =$

$r \div y =$

$r = 6$

$\underline{\quad} \div \underline{\quad} = k$

$k =$

Part 5

Solve the word problem below. Make sure to write the equation

Alexa saved 52 dollars from her allowance. She was given some money from her grandmother for her birthday. She now has 78 dollars. How much did her grandmother give her?

Grade 3

C3. Coding

	Curriculum Expectations	Pages That Cover the Expectations
C3.1	Solve problems and create computational representations of mathematical situations by writing and executing code, including code that involves sequential, concurrent, and repeating events	168 – 181, 190 – 191
C3.2	read and alter existing code, including code that involves sequential, concurrent, and repeating events, and describe how changes to the code affect the outcomes	182 – 189, 191 – 199

Writing Code

Writing Code – Code Bank

go right (# of spaces)
go left (# of spaces)
go down (# of spaces)
go up (# of spaces)
open door

Robot moved _____ squares

1. Write the code that gets the robot to the door

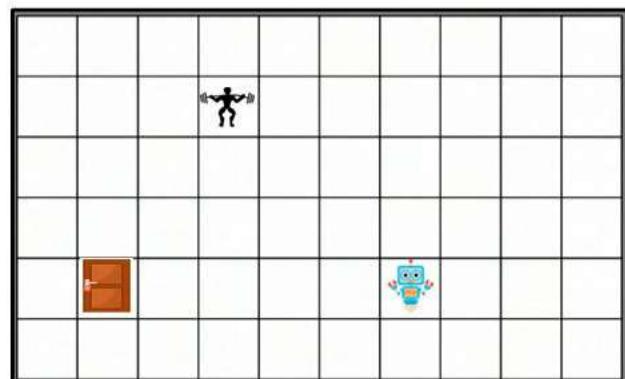
Line 1: _____

Line 2: _____

3: _____

Robot moved _____ squares

2. Write the code that gets the robot to the door and then home.


Line 1: _____

Line 2: _____

Line 3: _____

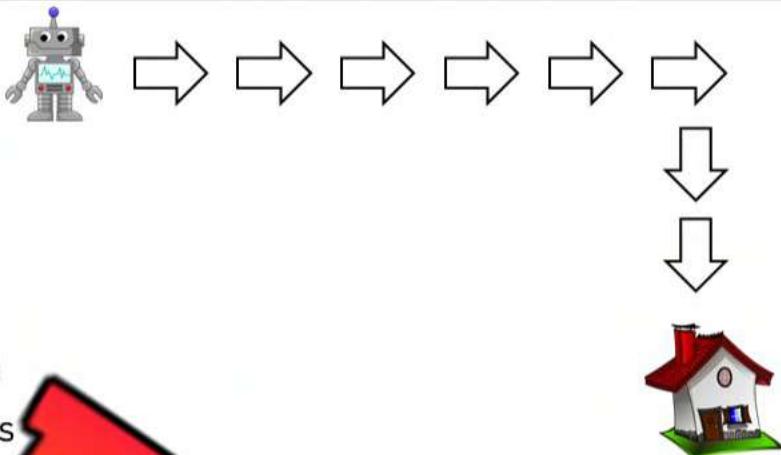
Line 4: _____

Line 5: _____

Robot moved _____ squares

Reading Code – Creating Programs

Question


Read the code and create the program

Example

Code

go right 6
go down 2
open door

Robot moved _____ squares

1.

Code

go down 2
go right 1
go down 2
go right 5
open door

Robot moved _____ squares

2.

Code

go right 2
go down 3
go left 2
go down 1
go right 6
open door

Robot moved _____ squares

Reading Code – Creating Programs

Question

Read the code and draw the path the robot will take

1.

Code

go left 3

go down 2

go left 2

go down 1

go right 1

go up 1

Robot moved _____ squares

2.

Code

go down 3

go right 2


enter school

go down 2

go right 4

open door

Robot moved _____ squares

3.

Code

go down 3

go left 5

enter ice cream shop

go left 4

go up 4

open door

Robot moved _____ squares

Coding – Robot Lawn Mower

This is a self-driving lawn mower	Right makes it turn right	Left makes it turn right	Forward makes the car move forward by the number shown
It under con	Right	Left	Forward 2

Directions Use the codes to make the lawn mower to cut the field of grass

Codes – Forward 1, Turn Right	
Line 1	
Line 2	
Line 3	
Line 4	
Line 5	
Line 6	
Line 7	
Line 8	
Line 9	

Directions

Write code to get the lawn mower to cut the field of grass

Codes – Forward, Turn Left, Turn Right

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

Line 10

Line 11

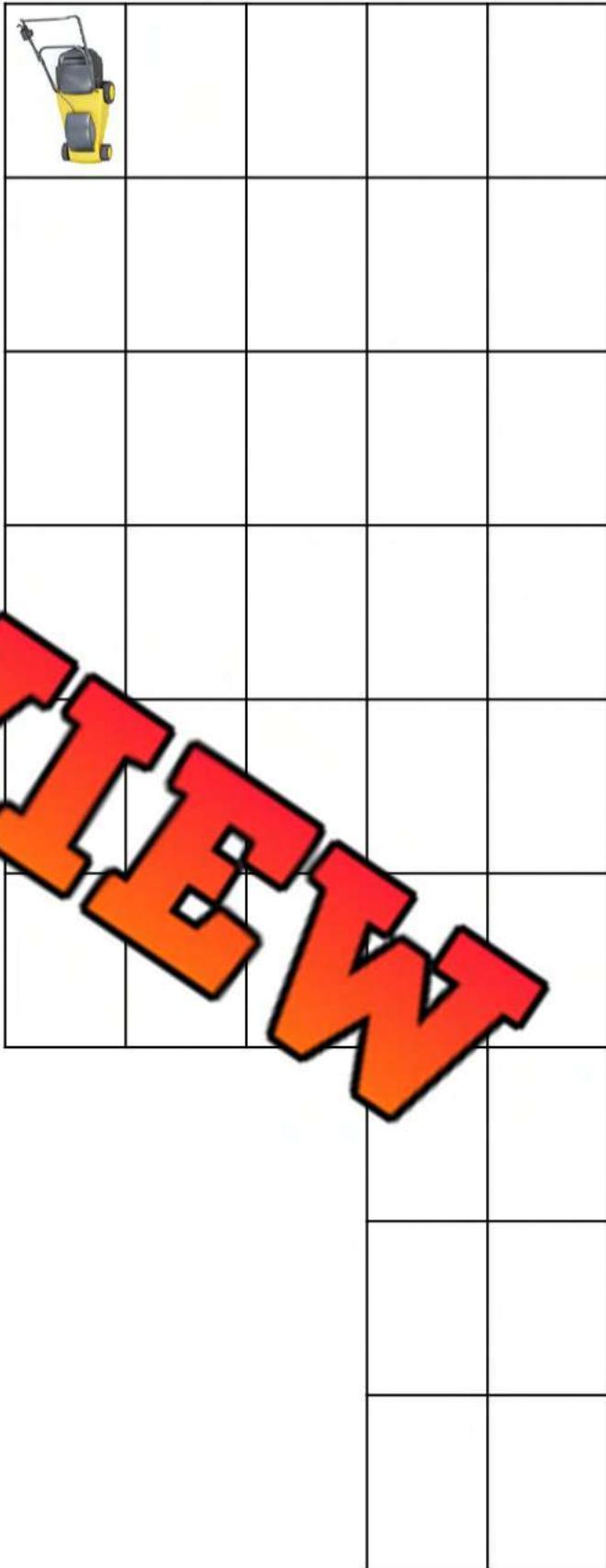
Line 12

Line 13

Line 14

Line 15

Line 16


Line 17

Line 18

Line 19

Line 20

Line 21

PREVIEW

Writing Code – Robotic Bees

Honeybees pollinate about 80% of plants worldwide. The problem is that since 1947, we have lost 60% of our honeybees. Robotic scientists are working to solve this problem by designing robotic bees that can pollinate plants.

Direction

Use the arrows to move the bee to each of the flower so it can pollinate them. Use as few moves as you can.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

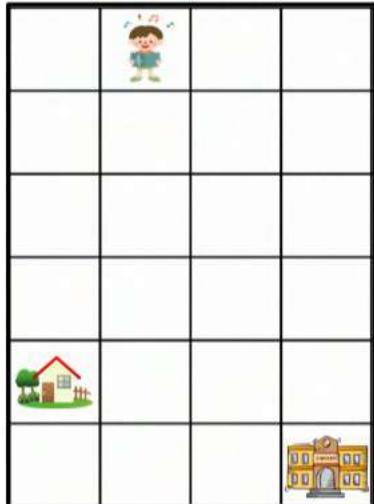
17

18

19

20

Fixing Code


Question

Put the scrambled code in the correct order by labelling the steps 1-6

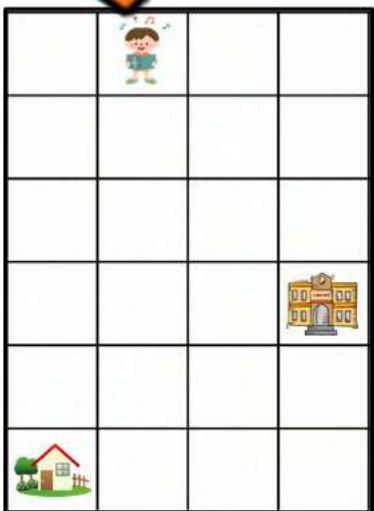
1. Go to school and then home

Code

- _____ - go up 1
- _____ - go down 5
- _____ - go right 2
- _____ - enter school
- _____ - go left 1
- _____ - enter home

2. Go to school and then home

Code


- _____ - go up 2
- _____ - go down 4
- _____ - go right 3
- _____ - enter school
- _____ - go left 1
- _____ - enter home

3. Go to school and then home

Code

- _____ - go down 2
- _____ - go down 3
- _____ - go right 2
- _____ - enter school
- _____ - go left 3
- _____ - enter home

Fixing Code

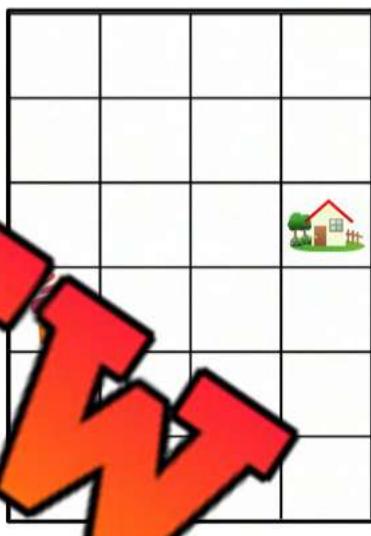
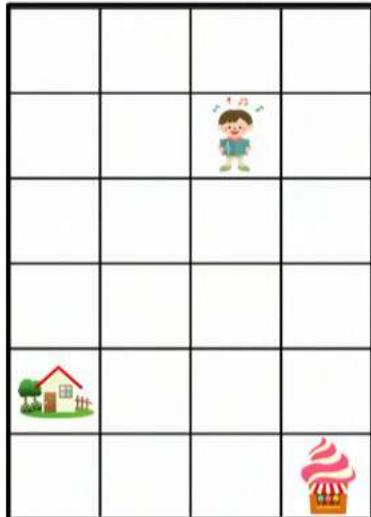
Question

Put the scrambled code in the correct order by labelling the steps 1-6

1. Go to the ice cream shop and then home

Code

_____ - go up 1



_____ - go right 1

_____ - go up 4

_____ - enter ice cream shop

_____ - go left 1

PREVIEW

2. Go to the ice cream shop and then home

Code

_____ - go up 2

_____ - go left 1

_____ - enter home

_____ - enter ice cream shop

_____ - go up 1

_____ - go right 3

3. Go to the ice cream shop and then home

Code

_____ - go up 2

_____ - go down 5

_____ - go right 2

_____ - enter ice cream shop

_____ - go left 3

_____ - enter home

Working with Code

Question

Read the code and write what will happen. The first one is done for you

1.

Code

```
Code1 = "VE"  
Code2 = "LO"  
Code3 = "ER"  
Code4 = " "  
Code5 = " "  
print ("I", Code2, Code3, Code4, Code5, "I")
```

The Computer Program:

I LOVE CODE

2.

Code

```
Code1 = "F"  
Code2 = "UN"  
Code3 = "TH"  
Code4 = "MA"  
Code5 = "IS"  
print ("I think", Code4, Code3, Code5,  
      Code1, Code2)
```

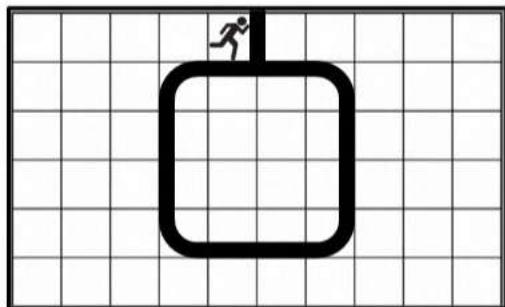
computer Program:

3.

Code

```
Code1 = "A"  
Code2 = "PRO"  
Code3 = "MER"  
Code4 = "GRAM"  
Code5 = "ING"  
print ("I am", Code1, Code2, Code4, Code3)
```

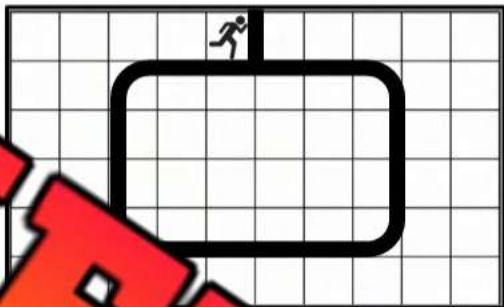
The Computer Program:



Writing Code - Loops

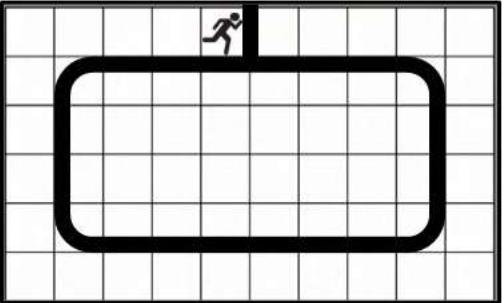
Writing Code - Code Bank

go right (# of spaces)
go left (# of spaces)
go down (# of spaces)
go up (# of spaces)
loop _____ times


Example

go right 3
go down 5
go left 5
go up 5
go right 2
loop 5 times
go right 1

Question: Write code that sends the runner around the track


1. Use a loop to send the runner around the track 5 times. (Don't forget to cross the finish line!)

Line 1: _____
Line 2: _____
Line 3: _____
Line 4: _____
Line 5: _____
Line 6: _____
Line 7: _____

2. Use a loop to send the runner around the track 3 times. (Don't forget to cross the finish line!)

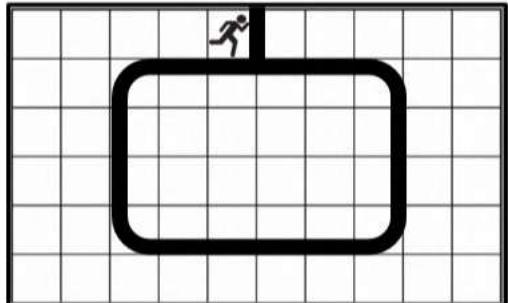
Line 1: _____
Line 2: _____
Line 3: _____
Line 4: _____
Line 5: _____
Line 6: _____
Line 7: _____

Writing Code - Loops

1. Use a loop to send the runner 600 metres.

Line 1: _____

Line 2: _____


Line 3: _____

Line 4: _____

Line 5: _____

Line 6: _____

Line 7: _____

1 lap = 100 metres

2. Use a loop to send the runner 600 metres.

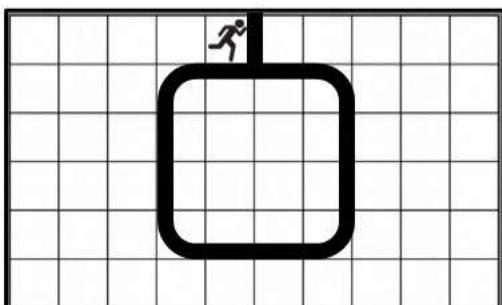
Line 1: _____

Line 2: _____

Line 3: _____

Line 4: _____

Line 5: _____


Line 6: _____

Line 7: _____

1 lap = 200 metres

3. Read the code and figure out how far the runner went.

1 lap = 10 metres

Code

loop 12 times

 go right 3 spaces

 go down 5 spaces

 go left 5 spaces

 go up 5 spaces

 go right 2 spaces

 go right 1 space

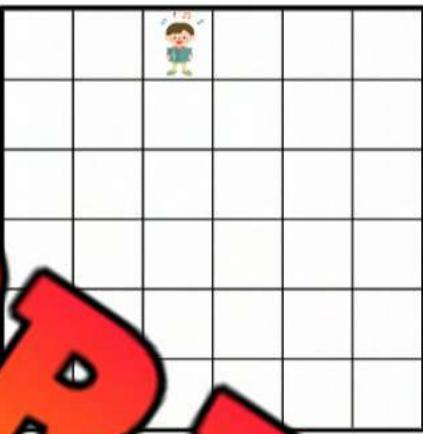
 run program

My Answer

Interpreting Code

Question

Will the code work? Circle yes or no. Re-write any code that won't work


1.

Code

go down 5

go right 2

enter library

2.

Code

loop 4 times

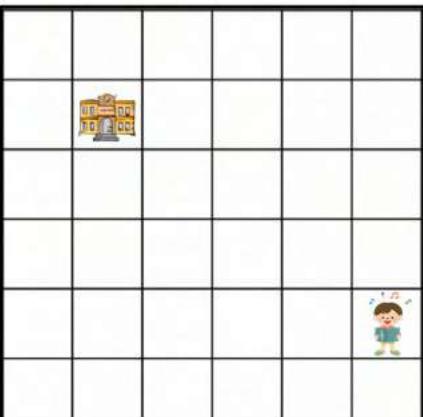
go down 1

go right 1

enter library

3. **Code**

loop 2 times


go up 1

go left 1

go right 2

go up 1

enter library

YES NO

Line 1: _____

Line 2: _____

Line 3: _____

Line 4: _____

YES NO

Line 1: _____

Line 2: _____

Line 3: _____

Line 4: _____

YES N

Line 1: _____

Line 2: _____

Line 3: _____

Line 4: _____

Line 5: _____

Line 6: _____

Activity: Robot Teacher

Objective

What are we learning about?

Students will create a sequence of commands to guide a "robot" (the teacher) to a specific spot in the classroom, learning how to write and execute sequential events, and then alter the sequence to observe how changes affect the outcome.

Materials

What you will need for the activity.

- Writing paper with a grid to write a sequence of commands (one student)
- Open classroom space for the teacher to move around
- A designated "target spot" in the classroom (e.g., a chair, a marked spot on the floor)

Instructions

How you will complete the activity.

1. Tell students they'll be "coders" and the teacher will be the "robot" following their commands exactly.
2. Show the class the target spot (e.g., a chair) where the robot needs to go.
3. Give each student a worksheet (or put students in pairs) to write their commands (e.g., "step forward 2, turn right, step forward 1") using language like "step forward [number]," "turn right," or "turn left." Students should include at least 1 loop in their code.
4. Have one student read their sequence aloud while the teacher follows the commands, moving through the classroom.
5. Check if the robot reaches the target spot and discuss what went wrong if it doesn't.
6. Ask the student to change one command (e.g., "turn right" to "turn left"), write the new sequence, and have the teacher follow it.
7. Discuss how the change affected the robot's path and if it reached the target spot.
8. Repeat with 1-2 more students, testing and altering their sequences.
9. Wrap up by explaining how the order of steps and changes affect outcomes, linking it to coding.

Robot Teacher – My Code

Instructions

Think about where your teacher is and where the target spot is.
Write a code that will program them to move to the target spot.
(Ex. Step forwards/backwards 2, turn right/left).

My Program – Coding Instructions

PREVIEW

Robot Teacher – Coding Map

Instructions

Once your code is written, draw a map of your classroom.

- 1) Draw a stick figure for the teacher.
- 2) Draw the target spot using an X.
- 3) Draw arrows to show where the teacher moves using your code.

PREVIEW

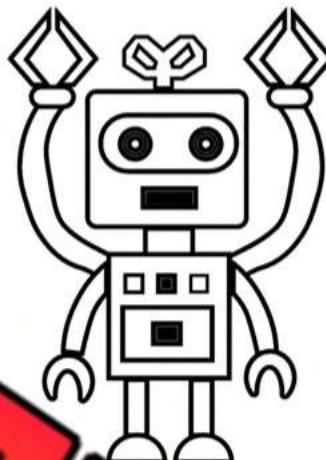
Activity: Human Robot - Concurrent Events

Objective

What are we learning about?

Students will create and follow sequential and concurrent movement instructions by taking steps in an open space, demonstrating computational representations. They will write instructions like "Move 5 steps forward, then turn 90 degrees" and execute concurrent actions like "Move 3 steps forward while clapping." By the end, they'll connect these actions to writing and executing code in a mathematical context.

Materials


Students will need for the activity.

- Instruction cards (pre-made and blank)
- Pencils
- Example card: "Move 5 steps forward, then turn 90 degrees"

Instructions

How you will complete the activity

1. Explain that students will act as robots following movement instructions as a computer follows code, taking steps in an open space (5 min).
2. Demonstrate by following a pre-made card: "Move 2 steps forward, then turn 90 degrees," then "Move 3 steps forward while clapping" (5 min).
3. Divide into groups of 2-4; each group writes two cards: one sequential (e.g., "Move 4 steps forward, then turn 90 degrees") and one concurrent (e.g., "Move 2 steps forward while jumping") (10 min).
4. Groups take turns: one student as the "robot" follows their group's cards, staying in the open space, while others ensure they don't bump into anyone (15 min).
5. Discuss what they learned about clear instructions, the difference between sequential and concurrent actions, and how this relates to coding (5 min).

Examples

Read the example coding instructions below

Instruction Type	Instruction Text
Sequential	1) Move 4 steps forward 2) Turn 90 degrees.

Instruction Type	Instruction Text
Sequential	1) Move 3 steps forward 2) Turn 180 degrees 3) Clapping hands 4) Moving 2 steps backwards 5) Stop

Ideas

Below are ideas for commands you could use.

Marching	Nodding head	Jumping
Stomping feet	Clapping	Running
Snapping fingers	Spinning	Tapping head
Waving	Jumping	Tiptoeing
Shaking hands	Blinking eyes	Patting knees
Swaying side to side	Whistling	Pointing
Twirling arms	Laughing	Shrugging shoulders

Template

Cut out the card below for students to write their code on

My Program – Coding Instructions

Name: _____

200

Coding Quiz

Part 1

Write the code below

Robot moved _____ squares

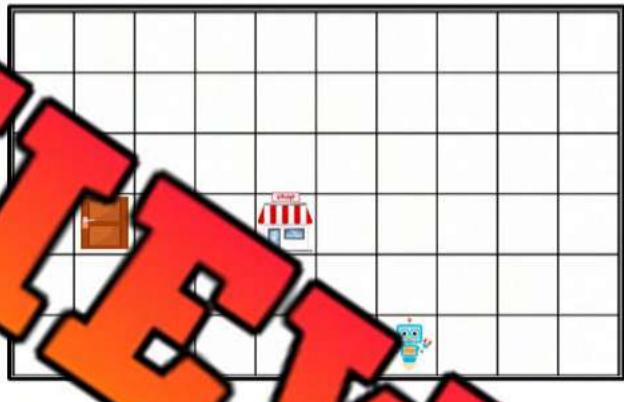
1. Write the code that gets the robot to the door

Line 1: _____

Line 2: _____

Line 3: _____

2. Write the code that gets the robot to the store and then home.


Line 1: _____

Line 2: _____

Line 3: _____

Line 4: _____

Line 5: _____

Robot moved _____ squares


Part 2

Read the code and create the program

3.

Code

```
go down 2
go right 1
go down 2
go right 5
open door
```


Robot moved _____ squares

Part 3

Put the scrambled code in the correct order by labelling the steps 1-6

4. Go to school and then home

Code

_____ - go up 2

_____ - go down 5

_____ - go right 1

_____ enter school

_____ left 2

_____ enter

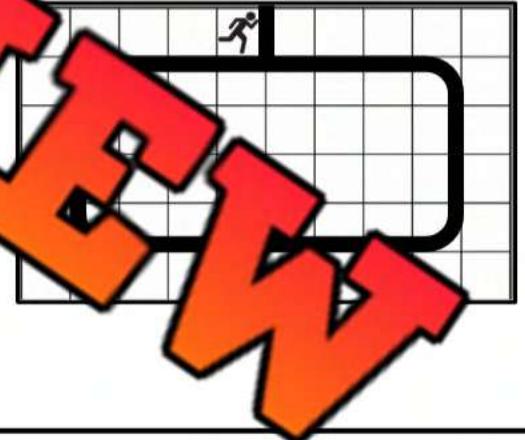
Part 4

With the code workable yes or no. Re-write any code that won't work

5. Use a loop to send the runner code back 5 times. (Don't forget to cross the finish line!)

Line 1: _____

Line 2: _____


Line 3: _____

Line 4: _____

Line 5: _____

Line 6: _____

Line 7: _____

Part 5

Write the message that the code has programmed

6.

Code

Code1 = "DE"

Code2 = "TO"

Code3 = "!"

Code4= "CO"

print ("I love", Code2, Code4,Code1,Code3)

The Computer Program:
