

Preview - Information

Thank you for your interest in this product. Within this preview, you will see:

- ✓ A selection of Ready-To-Use Google Slides Lessons.
- ✓ A selection of worksheets included in the workbook.

When you make a purchase, you will receive a folder that contains the .pdf workbook file and a link to where you can make a copy of the Google Slides Lessons unit to your Google Drive.

Thank you for shopping with us. Please let us know if you have any questions at:

rob@supersimplesheets.com

Google Slides Lessons Preview

Alberta Science Curriculum Matter Unit – Grade 3

3-Part Lesson Format

Part 1 – Minds On!

- Learning Goals
- Discussion Questions
- Quotes
- And More!

RAW MATERIALS

LEARNING GOAL

We are learning to understand what raw materials are and where they come from so we can identify different types of raw materials and explain how they are used in our everyday lives.

Where Did It Come From?

Drag each object into the correct box to show where it comes from: Plant, Animal, or Mined.

Plant	Animal	Mined

Part 2 – Action!

- Writing
- Matching
- Drag and Drop
- Drawing
- And More!

Consolidation – Reflection

Read each set of three statements. Two statements are true and one is a lie. Drag to the lie in each set.

Glass is found growing on trees.
Some raw materials come from plants.
Milk comes from animals.
Raw materials come from nature.
Wood is a raw material.
A chair is a raw material.
Some raw materials come from underground.
All raw materials are made in factories.
Metal can be a raw material.

Part 3 – Consolidation!

- Exit Cards
- Quizzes
- Reflection
- And More!

Alberta Science Curriculum

Matter Unit – Grade 3

PHYSICAL OR CHEMICAL CHANGE

Read each sentence. Decide what type of change is happening. Drag Physical Change or Chemical Change into the box.

1) Paper is folded to make a paper airplane.		Physical Change
2) Wood is cut into smaller pieces.		Chemical Change
3) Cake batter is baked into a cake.		
4) A piece of metal rusts over time.		
5) Milk turns sour and smells bad.		
6) Paper is torn into strips.		
7) Oil is changed into plastic.		
8) Chocolate melts when it is heated.		
9) Cotton fibres are spun into fabric.		

INDIGENOUS USE OF TREES AND ROCKS

Draw a line to match each cause with the correct effect. Think about how Indigenous peoples used trees and rocks in their daily lives.

Cause	Effect
Indigenous peoples used trees to make canoes.	They became tools for cutting and scraping.
Trees were cut and shaped carefully.	Tools and shelters were made.
Dry wood was used.	Nature was respected and used wisely.
Sharp rocks were shaped.	They could travel on water.
Rocks were stacked to make Inukshuks.	People could find directions and important places.
Trees and rocks were not wasted.	People could make fire for warmth and cooking.

Sort the Matter

Drag each picture into the correct box to show if it is a Solid, Liquid, or Gas.

Solid	Liquid	Gas

Items to sort: Smoke, Milk, Steam, Air, Dresser, Pot.

Alberta Science Curriculum Matter Unit – Grade 3

SPOT THE STATES OF MATTER: SOLID, LIQUID, OR GAS?

Drag the to each statement that is true about solids, liquids, or gases. Leave the on statements that are not true.

Solids keep their own shape.	Water is a liquid.
Liquids take the shape of the container they are in.	Air is a solid.
Solids can be poured like water.	A desk is a solid.
Liquids always keep the same shape.	Steam is a gas.
Gases have a fixed shape.	Rocks can flow like liquids.
Gases spread out to fill the space around them.	All matter is the same state all the time.

Sequence It! The Water Cycle

Drag the steps into the correct order to show the water cycle.

Ice forms on roads, trees, and sidewalks

Snow melts into rain as it falls

Rain hits very cold ground

Snow falls from the clouds

Drag and Drop Here

Changes of Matter

Drag each statement line. Each statement matches one change.

1) Water in a puddle slowly disappears on a warm day.	
2) Water drops form on the outside of a cold glass.	
3) Frost forms on a window on a cold morning.	
4) Dry ice changes directly into gas.	
5) Wet clothes dry outside in the sun.	
6) Water vapour in the air turns into tiny water drops.	
7) Snow or frost forms from water vapour in very cold air.	
8) A liquid turns into a gas when it warms up.	

Condensation

Deposition

Evaporation

Sublimation

Workbook Preview

Grade 3 – Science Unit

Organizing Idea Matter: Matter: Understandings of the physical world are deepened by investigating matter and energy.

Guiding Question: How can materials change?

	Learning Outcome - Students investigate and analyze how materials have the potential to be changed.	Pages
M3.1	<p>Processed materials are modified from natural materials and do not occur in nature.</p> <p>Processed materials are designed and manufactured for a specific purpose.</p>	7-31
M3.2	<p>Preview of 80 pages from this product that contains 196 pages total.</p>	46
M3.3	<p>Matter is anything that takes up space and has weight.</p> <p>States of matter include solid, liquid, and gas.</p> <p>Melting is a change of state from solid to liquid.</p> <p>Freezing is a change of state from liquid to solid.</p> <p>Evaporation is a change of state from liquid to gas.</p> <p>Condensation is a change of state from gas to liquid</p>	47-72
M3.4	<p>A solid is a state of matter that has a definite shape and volume.</p> <p>A liquid is a state of matter that has a definite volume but no definite shape.</p> <p>A liquid flows and takes the shape of the container it is in.</p> <p>A gas is a state of matter that has neither definite shape nor definite volume.</p> <p>A gas flows easily and expands to the size of the container it is in.</p> <p>Volume is the amount of space a solid, liquid, or gas takes up.</p>	53-72

Grade 3 – Science Unit

Organizing Idea Matter: Matter: Understandings of the physical world are deepened by investigating matter and energy.

Guiding Question: How can materials change?

	Learning Outcome - Students investigate and analyze how materials have the potential to be changed.	Pages
M3.5	<p>Substances are made of matter that has not been mixed with other matter, including water.</p> <p>The temperature at which a substance changes from solid to liquid is called the melting point.</p> <p>The temperature at which a substance changes from liquid to solid is called the freezing point.</p> <p>The melting and freezing points of a substance are the same temperature.</p> <p>The temperature at which a substance changes from liquid to gas is called the boiling point.</p> <p>The melting/freezing point of water is 0°C. The boiling point of water is 100°C</p>	73-102
M3.6	<p>The water cycle is a process in which water on Earth moves continuously between bodies of water, land, and the atmosphere.</p> <p>In the water cycle, water changes state from a liquid to a gas through evaporation, forms clouds through condensation, then falls back to Earth in a liquid or solid state (precipitation).</p> <p>Water can change state from solid to liquid and back again.</p> <p>Water can change state from liquid to gas and back again.</p> <p>In Alberta, the surfaces of many bodies of water change from liquid in the summer to solid in the winter.</p>	103-108
M3.7	<p>A reversible change is a change that can be undone, such as melting or freezing.</p> <p>A permanent change is a change that cannot be undone, such as cooking an egg or baking a cake</p>	13-14, 16-22, 26
Computer Science:		
CS.1	Students apply creativity when designing instructions to achieve a desired outcome.	109-116

NAME: _____

MATTER

Raw Materials

What are Raw Materials?

Raw materials are the materials we find in our environment that have not been changed. They are unprocessed, meaning no one has changed the material. We get raw materials from plants, animals, and from underground. Underground raw materials are mined, which means dug from the ground.

Plant Raw Materials

- ✓ Water
- ✓ Oil
- ✓ Flowers
- ✓ Fruits and vegetables

Animal Raw Materials

- ✓ Milk
- ✓ Meat
- ✓ Furs
- ✓ Hair and wool

Mined Raw Materials

- ✓ Iron ore
- ✓ Metals
- ✓ Minerals
- ✓ Oil and coal

Making Connections

Describe how you can use each of the types of raw materials

Plant Raw Materials

Animal Raw Materials

Mined Raw Materials

Plant Raw Materials	Animal Raw Materials	Mined Raw Materials

True or False

Is the statement true or false?

1) Raw materials are found in our environment	Yes	No
2) A desk is a raw material	Yes	No
3) A road is a raw material	Yes	No
4) Cheese is a raw material	Yes	No
5) Mined raw materials come from underground	Yes	No

Directions Is the picture a raw material? Yes or no?

Iron Ore

Yes

No

Oil

Yes

No

Furs

Yes

No

Plastic

Yes

No

Table

Yes

Almonds

Yes

No

Paper

Yes

No

Tree - Wood

Yes

No

Flour

Yes

No

Pickles

Yes

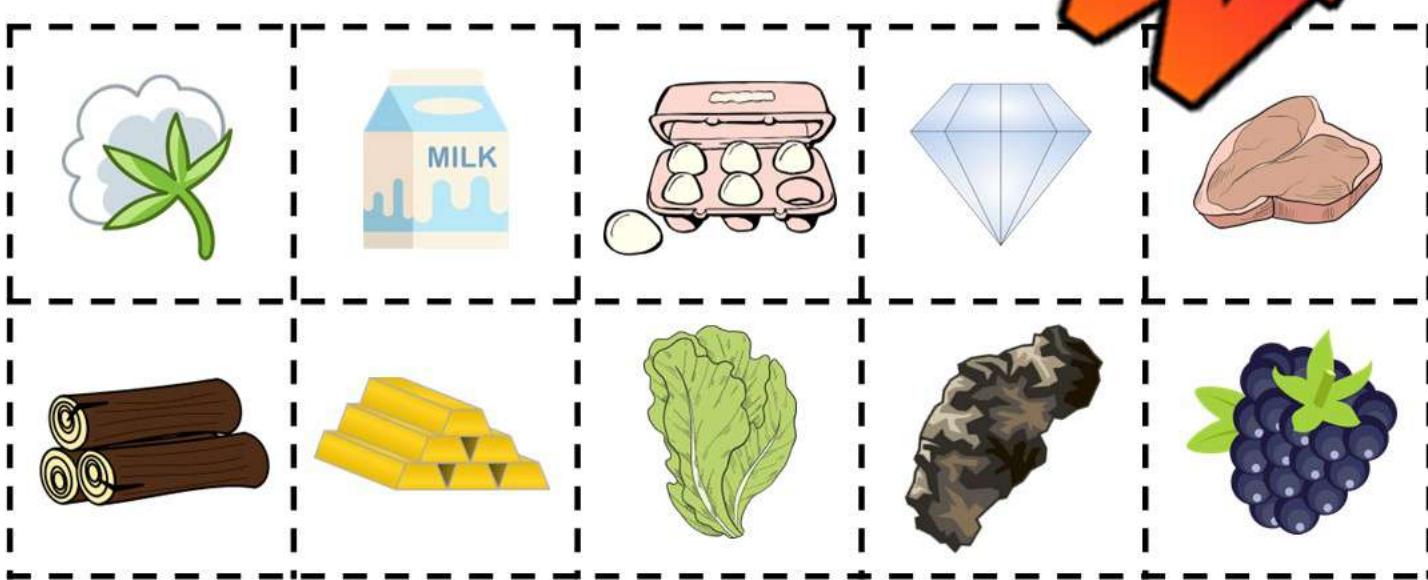
No

Wool

Yes

No

Cotton

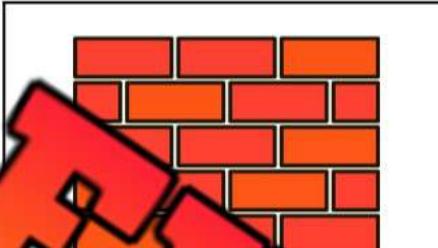

Yes

No

Directions Cut and paste the raw materials into the correct categories

PLANT	ANIMAL	MINED

PREVIEW


Natural or Human Made Materials

We use materials to make the things we need. Some of the materials we use are found naturally in our environment. These are materials you can look outside and see. Other materials are made by humans. These materials you would never see in nature without a human making it and putting it there.

Directions: Decide whether the material is natural or human-made

Natural	Human-Made
Wool	

Natural	Human-Made
Brick	

Natural	Human-Made
Steel	

Natural	Human-Made
Clay	

Natural	Human-Made
Wood	

Natural	Human-Made
Leather	

Natural	Human-Made
Stone	

Natural	Human-Made
Glass	

Natural	Human-Made
Plastic	

Changing Materials

What are Materials?

Look around and you will see many objects and structures that are made from different materials. Most of these things are made from raw materials that have been changed.

We can change materials physically or chemically. A **physical change** is when only the look of a material has changed. Physical change can be reversed. A **chemical change** is when you change a material so that it is a new material. It cannot be reversed.

Examples of Physical Changes

- ✓ Cutting a material
- ✓ Warming or cooling a material
- ✓ Bending a material
- ✓ Stirring or mixing a material

Examples of Chemical Changes

- ✓ Cooking a material
- ✓ Burning a material
- ✓ A material rusting
- A food rotting

Draw

Draw examples of materials that have changed physically and chemically

Physical

Chemical

Yes/No

Is the answer yes or no?

1) When batter is cooked and turns into cookies, is it a chemical change?	Yes	No
2) When wood is cut, is it a chemical change?	Yes	No
3) When we heat up hot chocolate, is it a physical change?	Yes	No
4) Do we need to change materials chemically and physically?	Yes	No
5) Is cutting a paper a chemical change?	Yes	No

Activity - Physical or Chemical Change

Directions Is the picture showing a chemical or physical change?

Cutting Hair

Physical

Chemical

Burning

Physical

Chemical

Boiling

Physical

Chemical

Chopping

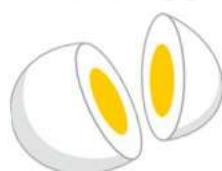
Physical

Chemical

Baking

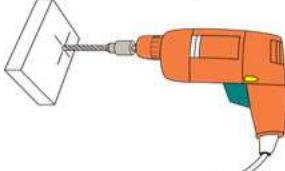
Physical

Chemical


Freezing

Physical

Chemical


Boiled Egg

Physical

Chemical

Drilling

Physical

Chemical

Drilling

Physical

Chemical

Rotting Food

Physical

Chemical

Fireworks

Physical

Chemical

Mixing

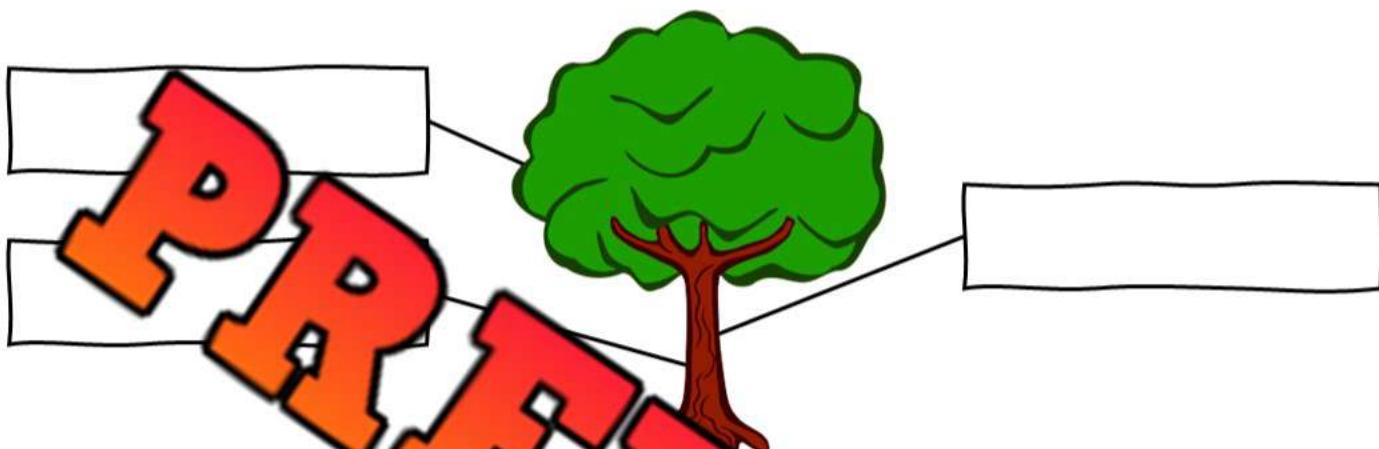
Physical

Chemical

Where Materials Come From

Directions Write the materials that are found from the pictures below

Cloth


Rubber

Stone

Metal

Wood

Paper

Cloth

Rubber

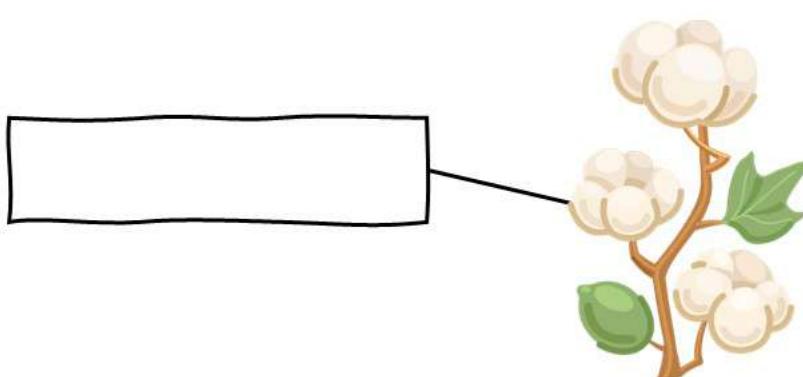
Stone

Metal

Wood

Plastic

Cloth


Rubber

Stone

Metal

Wood

Paper

Physical Change - Cotton

How Is Cotton Changed?

Did you know that about 75% of all clothing in the world has cotton in it? Cotton is a soft fabric that is used in many different types of clothing, including socks and shirts.

To change the raw cotton into fabric, many physical changes are done. Since no new material is made, the changes are all physical. Also, a physical change can be undone or reversed, while chemical changes are permanent. In this case, the fabric could be turned back into cotton, even though it wouldn't look the exact same.

Making Cotton Steps

- 1) Picking - Cotton is picked off of the cotton plant
- 2) Separating - The cotton is then ginned which separates the seeds from the cotton fibres
- 3) Carding - Turning cotton into carded cotton strands of cotton
- 4) Spinning - The strands of cotton are spun into like yarn
- 5) Weaving - The yarn is weaved into fabric

Visualizing

Draw what you were picturing while you were reading.

Explain the picture

Question

Why is making cotton fabric a physical change?

Physical Change - Cutting

Cutting Materials

When objects are made, they are cut to be a certain size. Cutting is a physical change because a new material is not made. Instead, we could put the material back together.

Cutting is the most used physical change that is done to almost every object. Cutting needs to be done to make sure our materials are the proper size. Having the right size allows our objects to fit us or our spaces properly.

Check off the examples of changes made to materials by cutting.

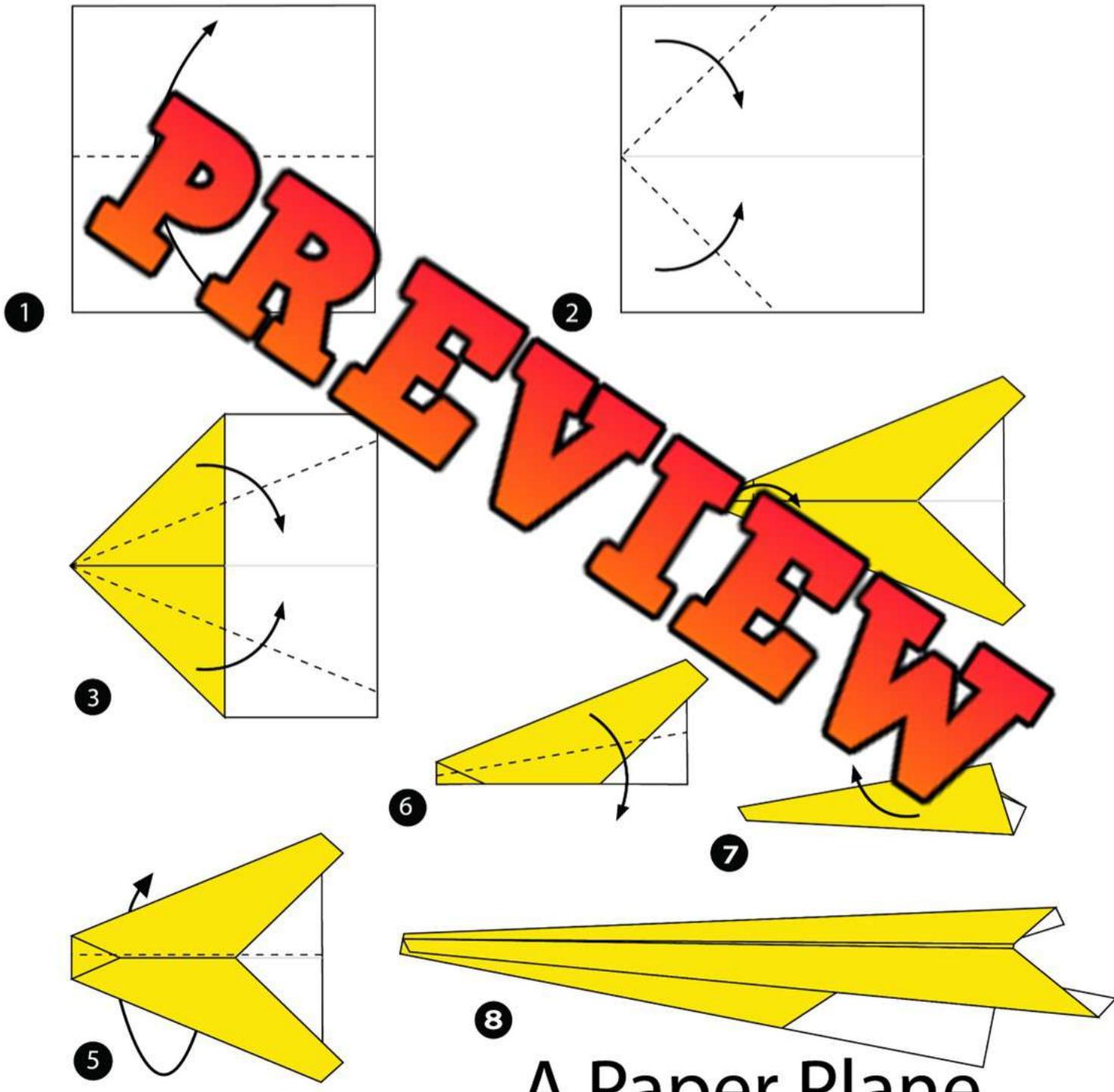
- ✓ Cutting hair
- ✓ Cutting wood
- ✓ Cutting wood into pieces for pulp for paper
- ✓ Fabrics are cut to make clothes
- ✓ Steel is cut to size
- ✓ Cutting food for our meals

Making Connections

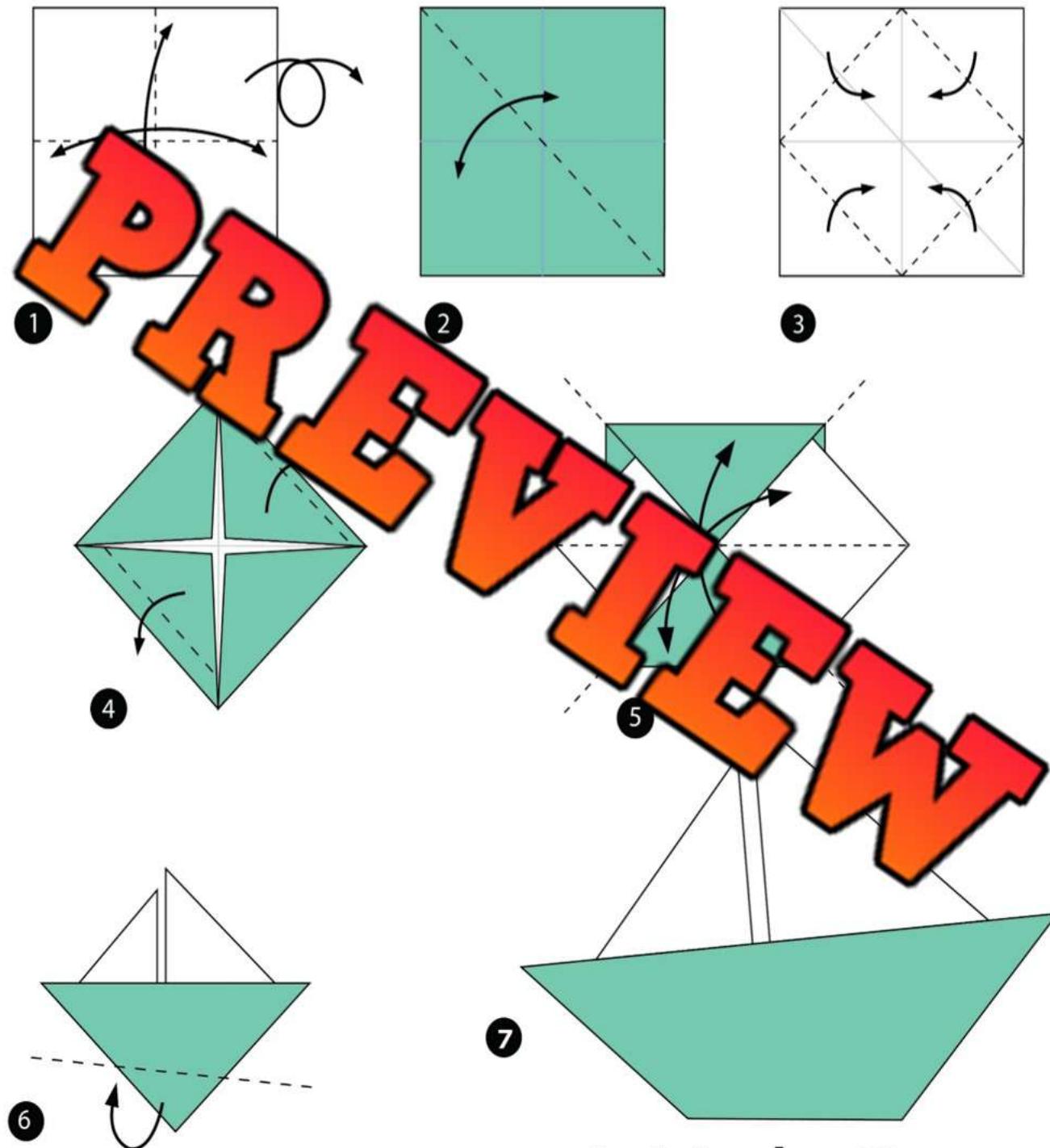
When was the last time you cut something? Why did you cut it?

PREVIEW

When was the last time you cut something? Why did you cut it?


Yes/No

Is the answer yes or no?


1) When we cut an object, are we making a chemical change?	Yes	No
2) Is cutting the stem off a strawberry a chemical change?	Yes	No
3) Is cutting up wood into tiny pieces for paper a physical change?	Yes	No
4) Is cutting materials important in making the things we need?	Yes	No
5) When you get your haircut, is your hair changing chemically?	Yes	No

Activity - Physical Change - Bending/Folding

Instructions Bend and fold the paper to make a paper airplane

Instructions Bend and fold the paper to make a boat

A Little Boat

Making Paper - Physical/Chemical Changes

There are many steps in the process of making paper. Some of the changes made during each step are physical and some are chemical.

Directions Is the step a physical or chemical change?

1) Cutting down a tree	Physical	Chemical
2) Taking the bark	Physical	Chemical
3) Chopping the wood into tiny pieces	Physical	Chemical
4) Cooking the wood	Physical	Chemical
5) Washing the wood chips	Physical	Chemical
6) Adding chemicals to the wood chips to make pulp	Physical	Chemical
7) Bleaching (cleaning) the pulp	Physical	Chemical
8) Forming the pulp into paper sized sheets	Physical	Chemical
9) Drying the wet pulp	Physical	Chemical
10) Cutting the dry sheets to size	Physical	Chemical

Word Search Find the words in the word bank

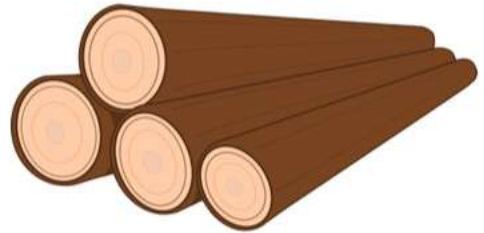
Word Bank

Chemical	Physical
Cooking	Drying
Cutting	Cleaning
Forming	Wood
Chips	Pulp

V W T B L E H I X Q Q T O D C
E W G H K H V Q V Z I O T X R O
L Y F A X P Y A S I D G J J Y O
U K K G U C H H A O H S U Z I K
U A Y C R D W Y O C H I P S N I
F O R M I N G W S A Y W I O G N
C H E M I C A L X I S D X F P G
D C C U T T I N G N C E N S F K
I K X E R A T F P U F A N B H U
V T C L E A N I N G P U L P Q H

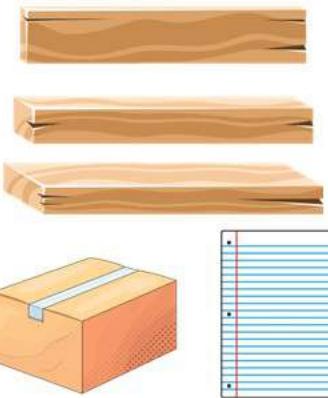
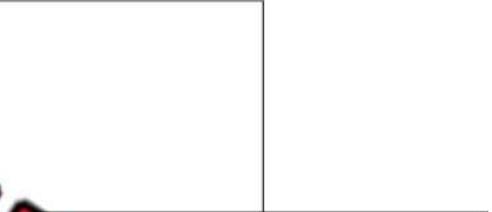
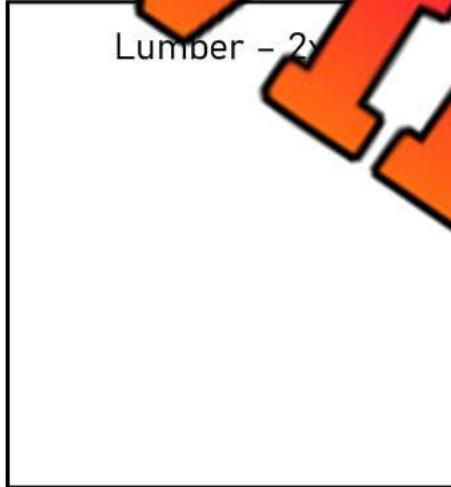
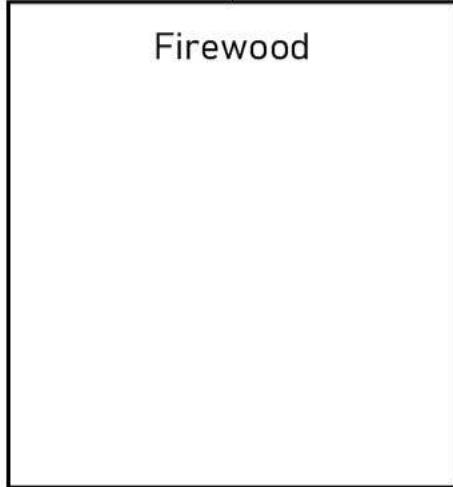
Materials - Wood and Paper Products

Directions

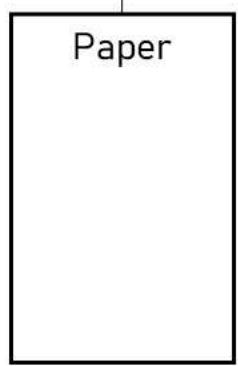

Fill in the flowchart below by drawing pictures

PREVIEW

Trees





Logs

Firewood


Lumber - 2x4

Pulp

Cardboard

Paper

Materials - Plastic

Plastic is made of fossil fuels. Oil and natural gas are fossil fuels found in the ground. They are used to make the plastics we use everyday.

To make plastic, oil and natural gas are heated. The plastic made is formed into water bottles, food packaging, auto parts and medical tools.

The manufacturing of plastic is a chemical change where liquids are turned into solid materials - a new substance.

Plastic is not made to last. It takes the average plastic item between 10 to 1000 years to decompose. This is why it is best to recycle plastic when we are done with it. That way, the plastic can be used again.

Fill in the Blanks

What is plastic used for?

What is plastic used for?					
Bank					
Food	Oil	Recycle	Water Bottles	Names	Underground

1) Plastic is made from heating _____ a _____.

2) Natural gas and oil are found _____.

3) Plastic is used to make _____.

4) A lot of the _____ we buy is packaged in plastic.

5) Plastic lasts a long time, so we should _____ it.

Question

Why is making plastic a chemical change? Why is it bad for the environment?

Chemical Change - Making Plastic

How is Plastic Made?

Plastic is a very important material that is used to make many objects in our lives. To make plastic, chemical changes are made to different materials.

How Plastic Is Made

- 1) Oil is pulled from the ground
- 2) The oil is heated, making a new chemical called naphtha (NAP-THA)
- 3) Other chemicals are mixed with naphtha to make plastic
- 4) The plastic is heated into a liquid
- 5) Dyes are added to the liquid plastic to change the colour
- 6) The liquid is poured into a mold and makes shapes with the plastic

Questions Answer the questions below

1) Why is making plastic a chemical change?

2) Look around, what plastic things do you see?

Yes/No Is the answer yes or no?

1) Is making plastic a chemical change?	Yes	No
2) When oil is pulled out of the ground, is the oil changed chemically?	Yes	No
3) When the oil is heated, is it a physical change?	Yes	No
4) When the liquid plastic is poured into a form, is it changed chemically?	Yes	No
5) When the plastic is melted, is it changed physically?	Yes	No

Making Natural Rubber

How Is Natural Rubber Made?

Natural rubber is made from a rubber tree. The sap that comes out of a rubber tree can be used to make natural rubber. It is a bit different than unnatural rubber made from oil.

How Natural Rubber is Made

- 1) A tap is put into the tree, where sap pours out. The sap is called latex.
- 2) Acid is added to the sap. This makes clumps in the mixture.
- 3) The clumps are broken and rolled into sheets
- 4) The sheets of rubber are heated to get rid of any water
- 5) The rubber is cut out to different shapes

Which Change? How is each material change in the steps of rubber making below

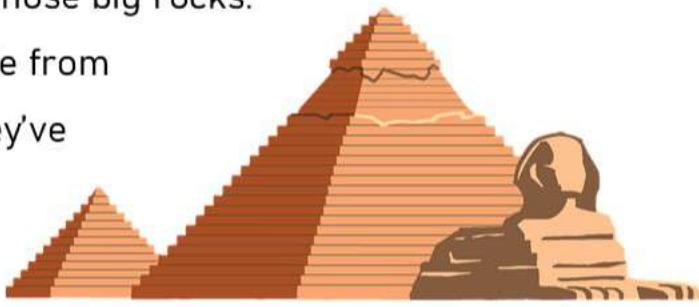
Steps	Type of Change
1) Sap is taken out of the tree	Physical
2) Acid is added to the sap, making new clumps	Chemical
3) The clumps are rolled and flattened	Physical
4) The flattened rubber is heated	Physical
5) The rubber is cut into shapes	Physical

Draw Draw a picture of 3 different things that use rubber

Materials Used Now vs Then

Olden Times

People used natural materials long ago. Stonehenge in England is a circle of big rocks. It's strong, but it was hard to move those big rocks.


The Great Pyramid in Egypt was made from limestone rocks. They were heavy, but they've lasted thousands of years!

Middle Ages

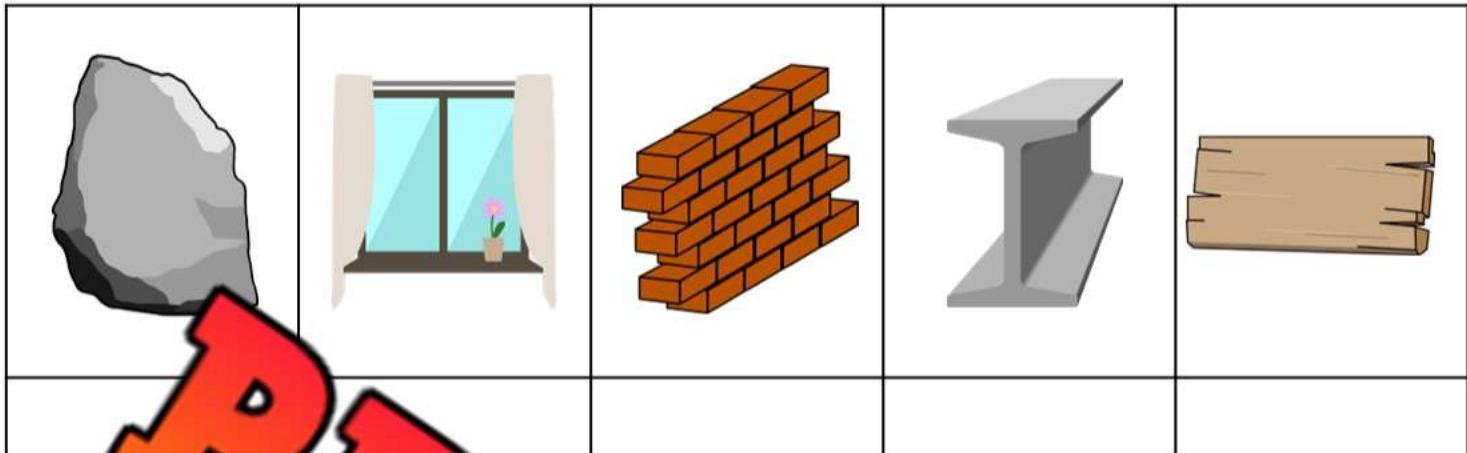
As time passed, people discovered new ways to shape stone and create bricks.

Castles started to appear. York Castle in England, which is still standing, was built with sturdy stone and hardy bricks.

Using stone and brick is still done today, but they're expensive and hard to move around.

Materials Used Today

Today, we use many different materials. Small buildings in our towns often use wood, bricks, and cement.


For skyscrapers, we use strong steel and sparkling glass. Look at the Burj Khalifa in Dubai! It's a towering structure made of steel and glass, standing as the tallest building in the world!

Bridges and Roads

Bridges like the Golden Gate Bridge in San Francisco use steel. It's sturdy, but it can rust. Roads use asphalt, which is strong, but it can get potholes.

Choose

Is the material **natural** or **human-made**?

Questions

Answer the following questions from the text to support your answers

1) Which materials were used long ago?

2) What materials are used to make roads, homes, and skyscrapers today?

Roads	
Homes	
Skyscrapers	

3) What are the downsides to the materials below?

Stone	
Brick	

Indigenous Use of Trees and Rocks

Using Trees

Indigenous communities made good use of trees.

They would chop down the tree, but they made sure not to waste any part of it.

- Houses: People built houses, known as wigwams out of dried tree trunks and branches.
- Canoes: They used wood to make canoes, a type of boat, to travel on water. They also used soft-wood trees like cedar to make canoes.
- Tools: The wood from trees could also be used to make tools like bow and arrow for hunting.
- Toys: Kids even made toys from tree branches!
- Fire: Dry wood helped make fire to keep warm and cook food.

Using Rocks

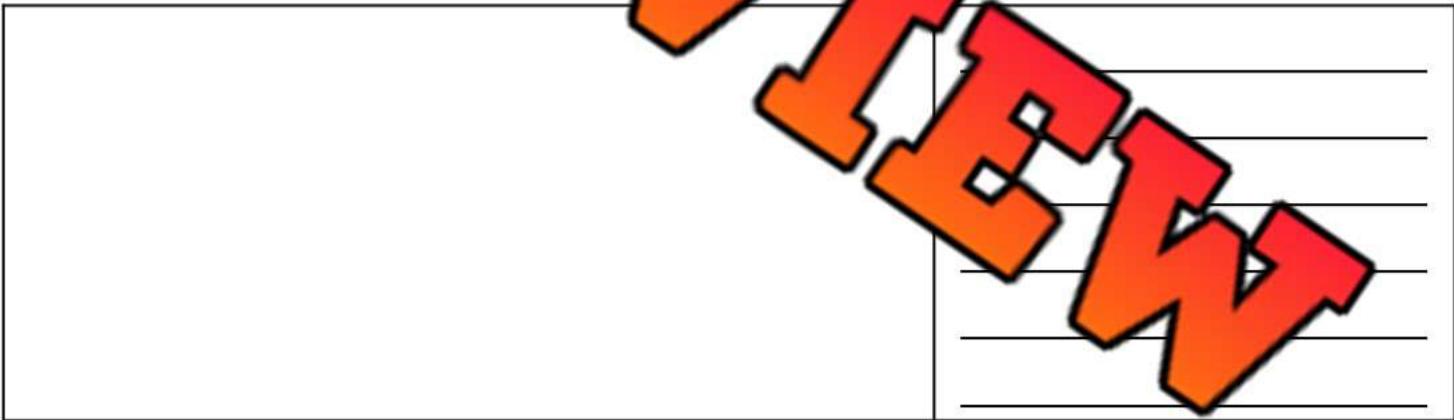
Rocks were also very useful to Indigenous communities. Here's how they used them:

- Tools: Sharp rocks became tools for cutting and scraping.
- Cooking: Some rocks, when heated, were used for cooking. They could warm up food!
- Symbols: The Inuit used rocks to make Inukshuks. Inukshuks were used for directions and to mark important places, like good hunting areas.
- Building: Rocks also helped in building homes and fences.
- Art: People drew on rocks to make beautiful art called pictographs.

Questions Answer the questions below using evidence from the text

1) How did Indigenous groups use trees?

2) How did Indigenous groups use rocks?



Visualizing

Draw what you were picturing as you were reading. Explain the picture

True or False

Is the statement true or false?

1) Some groups carved out hard wood to make canoes	True	False
2) They used cedar trees to make canoes	True	False
3) They cooked on rocks	True	False
4) The Inuit used rocks to make Inukshuks	True	False
5) Kids used rocks to make toys	True	False

Wigwam Shelter

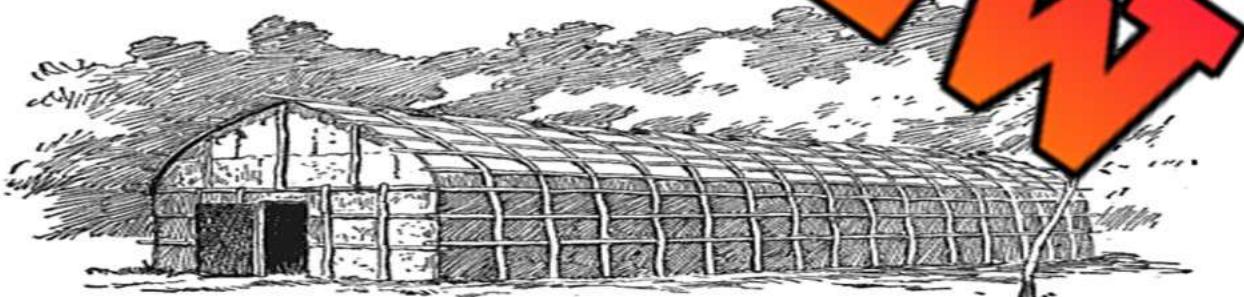
First Nations lived in many different shelters. One of the most popular is named the Wigwam. Wigwam shelters are simple to make and easily transportable. A Wigwam can be built in just an hour! The steps to building a Wigwam are listed below in the wrong order. Can you figure out the correct order?

Directions: Number the steps 1-6 beside each instruction

Step	Instructions
1	Cover the leaves with birchbark, woven material, or caribou skins
2	Build a hearth inside for a fire
3	Make a conical wood frame
4	Cover the leaves with tree branches
5	Place tree leaves on the floor to keep out the cold air
6	Make a hole in the roof to let the smoke out

Questions

1. Why do you think the Wigwam was such a popular shelter?

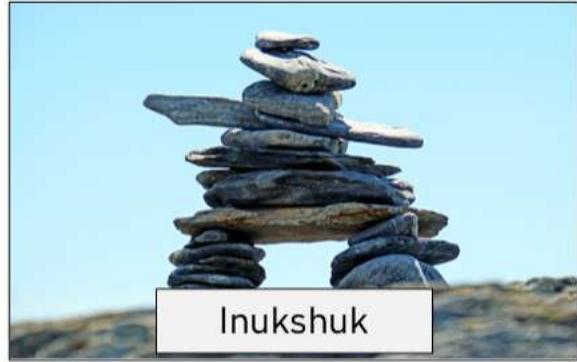

2. Why didn't the First Nations use brick, steel, and other strong materials?

Longhouse Shelter

The Haudenosaunee lived in permanent shelters named Longhouses. Longhouses were permanent because they were difficult to build, and impossible to move. The steps to building a Longhouse are written below in the incorrect order. Can you figure out the correct order?

Directions: Number the steps 1-7 beside each instruction

Step	Instructions
1	Find tall wood poles with bark
2	For the roof, add more wood poles to run the opposite direction of the U-shaped poles
3	Find tall wood poles to use for the frame
4	Make small holes in the roof to let smoke to escape
5	Bend the wood poles to form an upside-down U
6	Build sleeping platforms on the floor on the inside of the house
7	Build a row of hearths for the fires



What are the benefits and drawbacks of a longhouse?

Inukshuks

What are Inukshuks?

Inukshuks are special rock structures made by the Inuit people. They are made by stacking rocks on top of each other to form the shape of a person.

The Inuit use Inukshuks for three main reasons.

Navigation

Inukshuks are used to mark the way to something important.

- To mark a trail or path through the wilderness, especially in areas with no roads or markers.
- To indicate the direction to a nearby village, hunting or fishing grounds, or other important locations.
- To show the way to a good source of food, water, or shelter.

Communication

Inukshuks are used as a form of communication. They can tell other hunters about the location of food, water, or shelter.

- To show that a hunting ground is nearby.
- To warn hunters or travelers of danger, such as a steep cliff or a fast-flowing river.

Culture

Inukshuks are part of Inuit culture. They are symbols of Inuit communities working together and helping each other out.

True or False

Circle whether the statement is true or false

1) An inukshuk is just a bunch of rocks on top of each other	True	False
2) Inukshuks can tell us something important	True	False
3) The Inuit use inukshuks to help each other out	True	False
4) Inukshuks could tell us there is danger nearby	True	False
5) Inukshuks are used by all Indigenous groups	True	False

Question: How do the Inuit use inukshuks to help them know where important areas are?

PREVIEW

Draw Draw 2 inukshuks. Below each one, explain what they could represent?

Indigenous Use of Ice and Shells

Using Shells: Making Wampum Belts

The Indigenous people of Canada used shells to make something special called a Wampum belt. Wampum belts were used to remember important events or agreements. Let's see how they made them:

- 1) They found shells by the sea, especially white and purple ones.
- 2) They never cleaned very well.
- 3) After cleaning, they cut the shells into tiny bead shapes.
- 4) They made holes in each bead with a special tool.
- 5) They used a string to tie the beads together in a pattern. The pattern told a story or message.

Using Ice: Inuit Ways

The Inuit people, who live in the far North of Canada, have many ways to use ice:

- 1) Making Igloos: The Inuit made homes called igloos. They cut blocks of ice and stacked them in a circle. They added more and more blocks to make the igloo bigger and rounder. It was warm inside!
- 2) Hunting and Fishing: They cut holes in the ice to catch fish or seals that swam underneath.
- 3) Traveling: In winter, they would ride across the ice on sleds pulled by dogs. The hard, smooth ice made it easy to move.
- 4) Storing Food: The Inuit would use ice and snow to keep their food cold and fresh.

Questions How is a wampum belt made?

Wampum belts are made of small shells that are strung together. They are used to remember important events. Draw a wampum belt that symbolizes an agreement you have made with someone.

Draw a wampum belt that symbolizes an agreement you have made with someone

True or False Is the statement true or false?

1) The Inuit need the ice to travel on	True	False
2) The Inuit use the ice to make igloos	True	False
3) Wampum belts were just used for fashion and didn't mean anything	True	False
4) Wampum belts are made of shells	True	False
5) Wampum belts are used to remember important events	True	False

Indigenous Use of Plants and Animals

Using Plants

The Indigenous people of Canada found many creative uses for plants:

- Clothing: They weaved plant fibers into clothing. Cedar bark, for example, could be turned into hats, mats, and clothes.
- Tools: They provided wood for making items like canoes, bows, and arrows.
- Containers: They used large, sturdy leaves or woven grass to make containers for storing things.
- Toys: Some plants were used to make toys and games for the children to play with.

Using Animals

Animals were very important to the Indigenous people. Every part of the animal was used, and every part was used:

- Clothing: Animal skins were turned into warm clothing. Deer skin, for example, was used to make soft, strong clothing items.
- Shelter: The hides of large animals were used to cover their homes, like teepees or longhouses, to keep them warm and dry.
- Tools and Utensils: Bones, antlers, and even shells were transformed into tools and utensils for everyday use.
- Art: Feathers, bones, and hides were used to create beautiful pieces of art and jewelry.

Indigenous people made the most of plants and animals in their environment, always with respect and care.

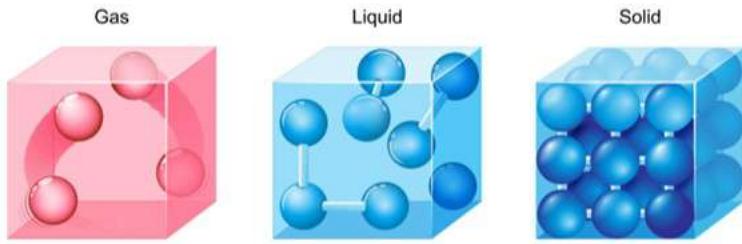
Questions

Answer the questions below using evidence from the text

1) How did Indigenous groups use plants?

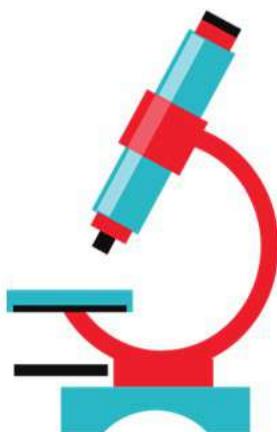
2) How did Indigenous groups use animals?

Draw


Draw ways that plants and animals were used by Indigenous groups

PREVIEW

What is Matter?


What is Matter?

Everything is made of matter. Look around. The desks in your classroom are made of matter, the air we breathe and the water we drink are all made of matter. Even our bodies are made of matter!

There is even matter that has mass and occupies volume. Air is matter because air has mass and it takes up space. We know this because a balloon that is full of air weighs more than an empty balloon. Air also takes up space because when we blow up a balloon, the air pushes on the balloon, expanding it.

A desk is also matter. It weighs something, meaning it has mass and it takes up space. When something takes up space, we say it occupies **volume**.

Particles - Atoms

All matter is made up of tiny particles called atoms. When you look at matter, you can't see any atoms. Even with the best light microscope, single atoms are too small. But, atoms are there. You are made of 7 billion billion atoms, or 7,000,000,000,000,000,000,000,000.

Phases of Matter

All matter can be grouped into three phases – solid, liquid, or gas. An example of matter that goes through the three phases of matter is water. Water can be ice as a solid, regular water as a liquid, and steam as a gas.

The atoms in a solid are very close together, while they get further apart in a liquid, and very far apart in a gas.

Questions

Use information from the text to support your answer

1) What does matter mean?

_____2) What are the three phases of matter? Explain how water can be all three phases of matter.

Questioning

What questions do you have about matter

1)

2)

3)

PREVIEW

True or False

Circle whether the statement is true or false

1. The atoms in a solid are further apart than in a gas	True	False
2. Matter is everything that takes up space and has mass/weight	True	False
3. Our bodies are matter	True	False
4. Our thoughts and dreams are matter	True	False
5. Matter is made up of tiny particles called atoms	True	False

Matter – Yes or No?

Is the example matter – yes or no?

Dream

Yes

No

Cereal

Yes

No

Human

Yes

No

Love

Yes

No

Time

Yes

No

Idea

Yes

No

Flower

Yes

No

Dog

Yes

No

Table

Yes

No

Wind

Yes

No

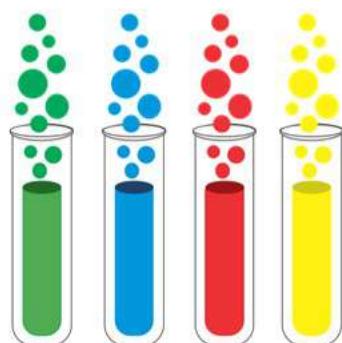
Rainbow

Yes

No

Sunlight

Yes

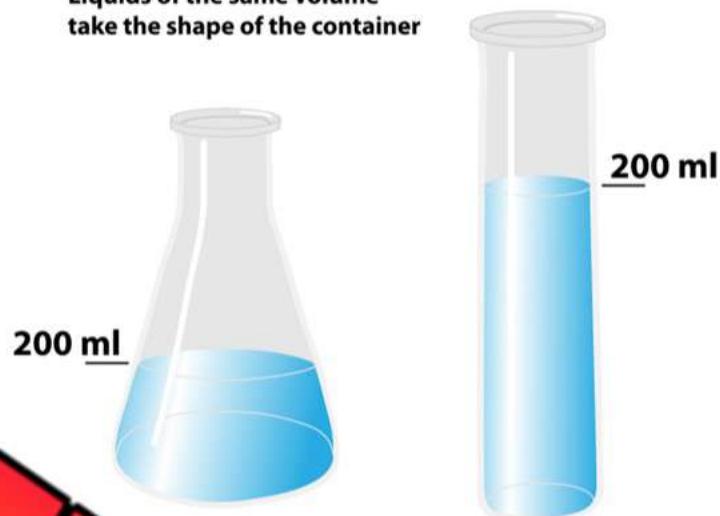

No

All About Liquids

Liquids

A **liquid** is a form of matter that can be poured. When you pour a liquid, it will always take the shape of its container. Pour liquids into cups when you are thirsty. The liquid will always take the shape of the cup you are using. The most common liquid is water.

Liquids all have weight and take up space. Liquids have a definite volume. This means if you put 1 cup of water into a bowl or into a tall glass, it takes up the same amount of space. The volume of a liquid refers to how much space the liquid takes up.



Properties of Liquids

- Do not have a definite shape
- Take the shape of their container
- Fill the bottom of a container or spread when they are not contained
- Maintain the same volume in different containers
- Are difficult to compress or squeeze because the particles are close together

Volume

Liquids of the same volume take the shape of the container

Liquids can change their state. Liquids can be made into solids when you cool them to their freezing points. Liquids can be turned into gases when you heat them to their boiling point. The freezing and boiling point for a liquid is different.

Word Search

Find the word bank words in the puzzle

V	N	W	F	I	B	V	K	F	H	V	L	N	O	F	C
D	A	C	J	I	L	N	R	U	W	C	M	H	T	L	O
A	Q	M	E	F	S	J	Y	T	P	D	W	Q	X	O	N
E	D	S	P	H	Y	H	E	U	W	L	Z	L	I	W	T
M	G	N	W	V	K	K	A	V	X	G	J	H	G	J	A
F	R	E	Z	I	N	G	P	V	O	L	U	M	E	I	
L	I	Q	D	S	O	W	E	P	U	Z	B	E	N		
D	P	I	R	A	T	U	R	E	T	J	E				
F	G	A	X	J	H	V	W	T	B	L	R				
E	H	M	A	T	Q	Q	F	G	O	E					

Word Bank	
Liquids	Shape
Container	Flow
Temperature	Matter
Freezing	Volume

Fill in the Blanks

to the right of the line

- 1) Liquids will always take the shape of their container.
- 2) The most common form of liquid is _____.
- 3) Liquids can change their states of _____.
- 4) Liquids will turn into solids when they are _____ (cooled/heated).
- 5) Liquids fill the _____ of their container.

PREVIEW

Making Connections

What does this reading remind you of in your life?

Experiment - Flowing Liquids

Research Question**What are we testing?**

Which liquids will flow the fastest, and which will flow the slowest?

Materials**What do we need for our experiment?**

- Small clear plastic cups
- Small candies
- Various liquids (water, vinegar, oil, honey, corn syrup, etc.)
- Stopwatch (optional)

Method**How do we complete the experiment?**

1. Fill each of the cups full of the different liquids.
2. Drop a candy into the first liquid. Use the stopwatch to time how long it takes to drop to the bottom of the cup.
3. Repeat this step for all liquids.
4. Record the length of time for each liquid on this page.

Hypothesis**Which liquid will flow the fastest and the slowest?**

Fastest _____

Slowest _____

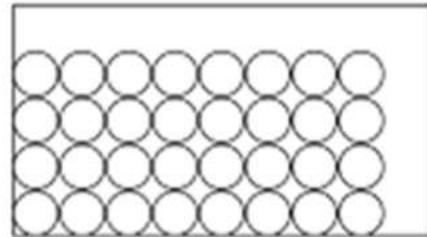
Observations

Record how long the candy takes to sink to the bottom

Liquid	Prediction (seconds)	Actual time (seconds)

Diagram

Draw a picture of your experiment. Draw the liquid and show candy flowing through the liquid

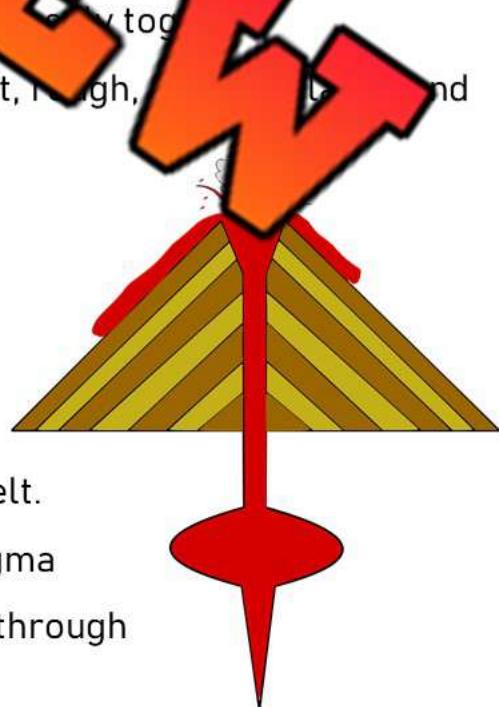

PREVIEW

Characteristics of Solids

All About Solids

Solids can have a lot of different characteristics. Many solids are hard like your desk, the walls and floors. Solids can also be soft, like a cotton ball. Some solids like play dough and clay can be molded so you can change their shape.

They are still solids. When you break a solid, it stays a solid, but in more than one piece. When you break a cookie, it will be small pieces and crumbs, but it will not become a liquid.


Therefore, solids:

- Can't be poured
- Holds their shape unless an outside force acts on it (example – cuts it)
- Has a definite shape (do not take the shape of their container)
- Is difficult to squeeze as the particles are already packed tightly together
- Is dense because there are many particles packed closely together
- Can be described in many ways, including hard, soft, rough, smooth, and bumpy

Solids Can Melt

When a solid is heated to its melting point, it will turn into a liquid. Some solids, like ice, will change into a liquid at room temperature. Other solids, like rocks, will need to be heated at very high temperatures to melt.

Rocks will melt under the ground in magma. Magma is melted rock. When magma comes up to the surface through a volcano, it is called lava.

Questions

Answer the questions below using evidence from the text

1) What does it mean that solids do not take the shape of their container? Give an example.

2) What does it mean that solids hold their shape? Give an example.

Visualizing

Draw what you pictured while you were reading. Explain the picture

True or False

Is the statement true or false

1) When you break a solid into pieces, it becomes a liquid	True	False
2) When a solid melts, it becomes a liquid	True	False
3) A solid takes the shape of its container	True	False
4) Solids can be strong, weak, soft, or hard	True	False
5) Rocks can melt into liquids	True	False
6) Rocks cannot melt because they are too hard	True	False

Exit Cards

Cut Out Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark	
------	--

Is the statement true or false?

1) Solids take the shape of their container.

True	
False	

2) When you break a solid, it becomes a liquid.

True	
False	

3) Rocks will melt into lava under the ground.

True	
False	

4) Solids can be soft, like a cotton ball.

True	
False	

5) Solids can be poured easily like water.

True	
False	

Name: _____

Mark	
------	--

Is the statement true or false?

1) Solids take the shape of their container.

True	
False	

2) When you break a solid, it becomes a liquid.

True	
False	

3) Rocks will melt into lava under the ground.

True	
False	

4) Solids can be soft, like a cotton ball.

True	
False	

5) Solids can be poured easily like water.

True	
False	

Name: _____

Mark	
------	--

Is the statement true or false?

1) Solids take the shape of their container.

True	
False	

2) When you break a solid, it becomes a liquid.

True	
False	

3) Rocks will melt into lava under the ground.

True	
False	

4) Solids can be soft, like a cotton ball.

True	
False	

5) Solids can be poured easily like water.

True	
False	

Name: _____

Mark	
------	--

Is the statement true or false?

1) Solids take the shape of their container.

True	
False	

2) When you break a solid, it becomes a liquid.

True	
False	

3) Rocks will melt into lava under the ground.

True	
False	

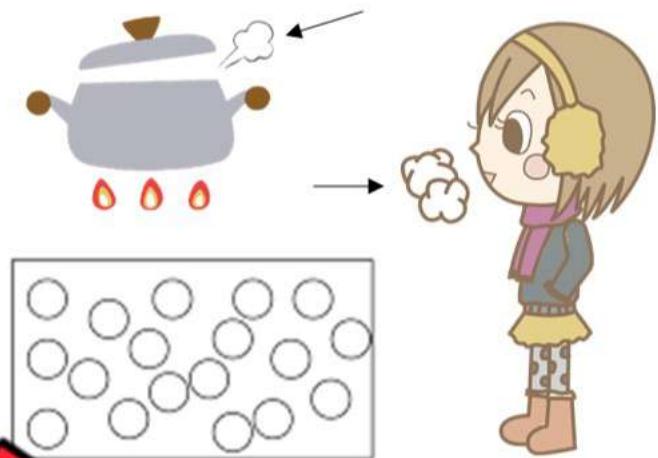
4) Solids can be soft, like a cotton ball.

True	
False	

5) Solids can be poured easily like water.

True	
False	

All About Gases


All About Gases

One form of matter that we cannot see is a gas. The air we breathe is a gas. Even though we can't see a gas, we know it is there. It might have a smell. We might even feel it, like we feel wind.

Examples of gases are steam, air, wind, perfume, balloon, balloon, helium.

How Gases Act

- Gases flow faster than liquids
- Gas particles are far apart
- Gases do not hold their shape

Yes/No Circle the best answer

1) Can we see most gases?

No

2) Can gases hold their shape?

No

3) Do gases flow?

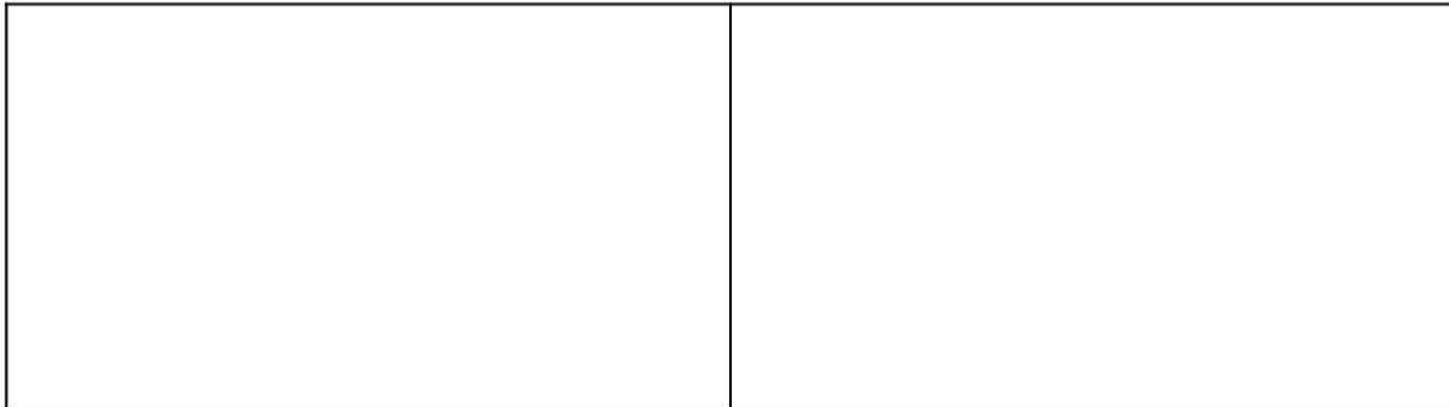
Yes

No

4) Do gases flow faster than liquids?

Yes

No


5) Is air a gas?

Yes

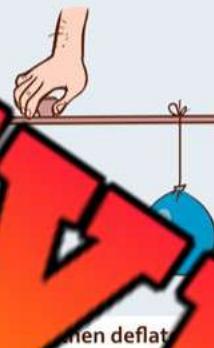
No

Draw

Draw examples of 2 different gases

Does Air Have Any Weight

Research Question What are we testing?


Does air have any weight?

Materials What do we need for our experiment?

- 2 balloons
- A metre stick
- String that is about 1 metre long

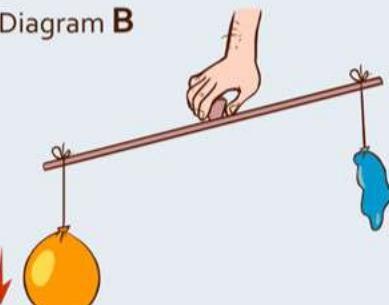

AIR HAS MASS

Diagram A

The blue balloon is then deflated.

Diagram B

And of experiment

Procedure How do we do the experiment?

1) Blow up the 2 balloons to the same size.

2) Cut two 15-centimeter-long pieces of string

3) Attach a balloon to opposite ends of the metre stick using the 15 cm string pieces

4) Tie the left-over string around the centre point of the metre stick

5) Hold the string up and observe the balloons

6) Make a hole in one of the balloons letting the air out

7) Observe what happens

Hypothesis What do you think will happen?

Results: Answer the questions below

1) Which balloon weighs more?

The Popped Balloon

The Blown-Up Balloon

2) How do you know one balloon is heavier than the other?

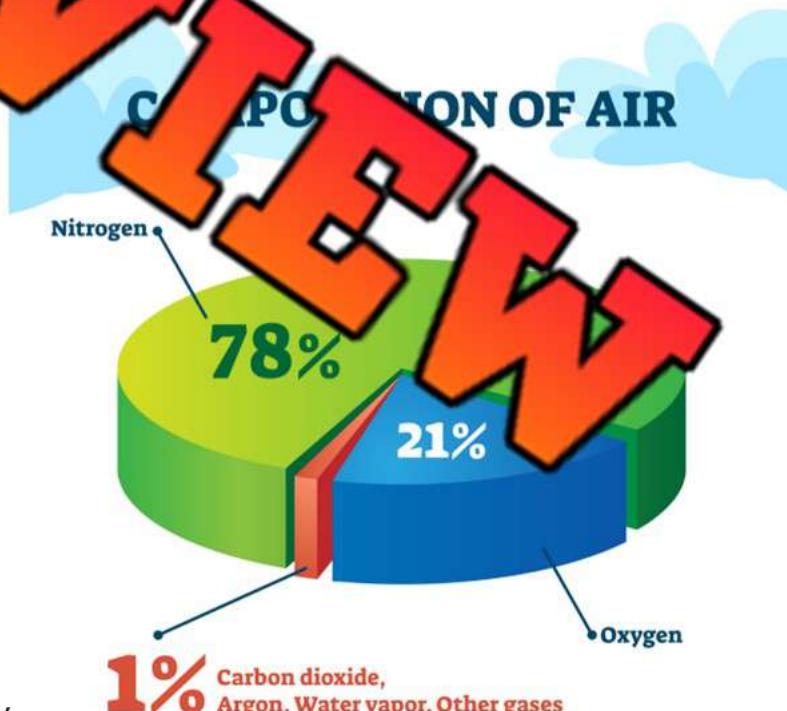
3) Draw a diagram of the experiment. Label the popped balloon and the blown-up balloon.

All About Air

All About Air

Everything around you is matter. The air you breathe is matter. The juice you drink is matter. The chair and desk in the classroom are both matter. They are all different kinds of matter. Matter can be liquid, solid or gas.

Air is matter in the form of a gas. We cannot see air, but it is all around us.


Air covers the earth in a layer that is several kilometers deep. This layer is called the ~~earth~~ ~~atmosphere~~. When you go to outer space, you leave the atmosphere and won't have air around you!

Air is made of several different kinds of gases. Air is made of:

- Nitrogen → 78 percent
- Oxygen → 21 percent
- Carbon Dioxide
- Water Vapour
- Argon
- Rare gases

Properties of Air

- We cannot feel air unless it is moving, like on a windy day
- We cannot see clean air
- Air has no colour, unless it is dirty
- We cannot smell air unless it is polluted. Clean air has no smell
- Air is a gas and a fluid. We know this because planes can fly through the air!

True or False

Is the statement true or false?

1) Air is matter	True	False
2) Our air is made mostly of oxygen	True	False
3) Our bodies are matter	True	False
4) Air is a liquid	True	False
5) We can see or smell clean air	True	False

Search & Find the answers to the questions below

1) What are the two states of air? _____, _____, _____
2) Name the two main parts of air. _____, _____
3) Can we see clean air? _____
4) What kind of air can we see? _____
5) What layer on earth has air in it? _____

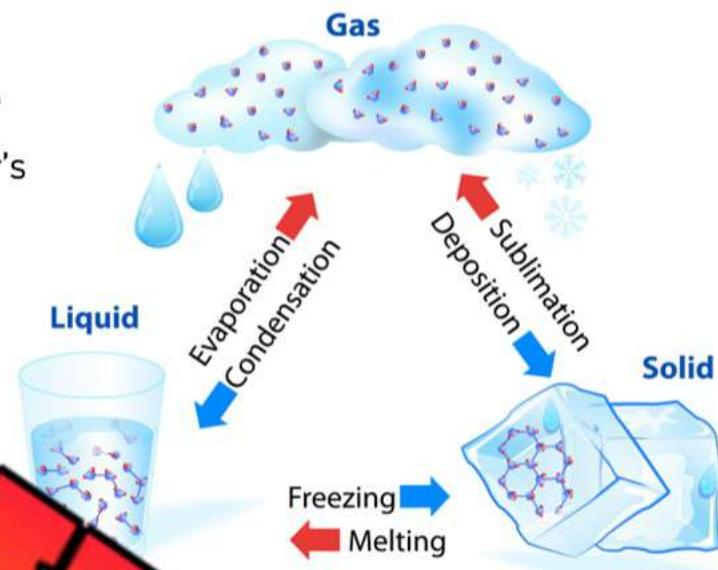
Making Connections

Have you ever seen dirty air? Explain.

PREVIEW

Changes in State - Physical Changes Involving Heat

Changes in State - Physical Changes


When a solid, liquid or gas changes state, they have completed a physical change.

Changes in state are reversible because no new substance is formed. The matter's chemical makeup is the exact same.

For example, water has the chemical makeup of hydrogen and oxygen (H_2O).

It does not matter if the water is in liquid form, gas form, or solid form, it still has the same chemical makeup (H_2O).

STATE OF MATTER

Changes in State Involve Heat

When matter changes state, it can be reversed by adding or removing heat. When matter absorbs heat, it could undergo the processes of evaporation, melting (fusion), or sublimation.

When matter releases heat, it could undergo the process of freezing (solidification), condensation or deposition.

Heat changes the particles in matter by changing the attractions between particles. When heat is absorbed by matter, the particles in the matter lose attraction and begin to move faster. They collide with each other and spread out, changing the state to a liquid or a gas.

When heat is released by matter, the particles in the matter gain attraction and get closer together. If enough heat is released, the particles may slow down and begin to vibrate instead of move, causing a change of state to a solid.

Matter and Heat

How is heat affecting the matter below?

Matter	Heat	New State of Matter?	Particles Movement – Circle One		
Water	Absorbed		Vibrate	Slow	Fast
Water	Released		Vibrate	Slow	Fast
Ice	Absorbed		Vibrate	Slow	Fast
Vapour	Released		Vibrate	Slow	Fast

Questions

Answer the questions below using evidence from the text

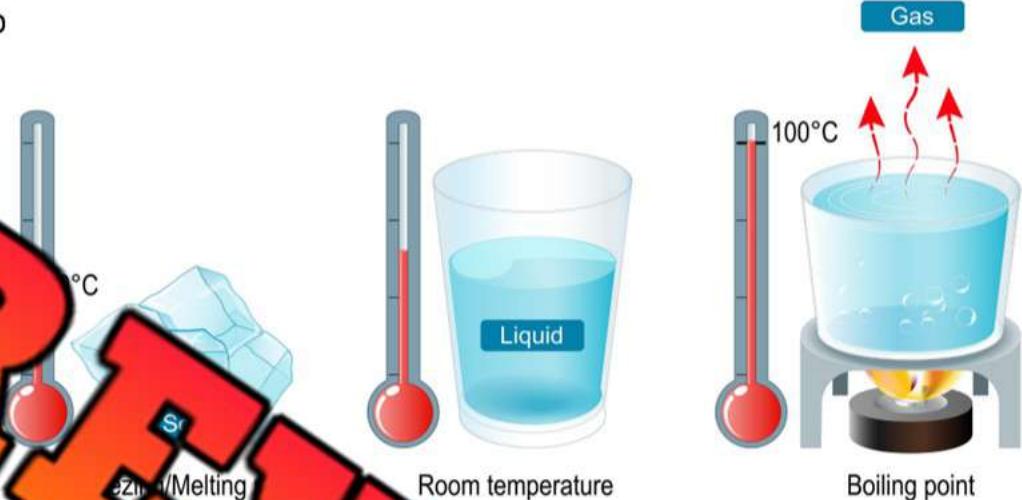
1) If matter is left in the same environment with heat added or released, will it change phases? Explain using an example.

2) What happens when heat is released by matter?

Visualizing

Draw what you were picturing while you were reading. Explain the picture

Melting Point

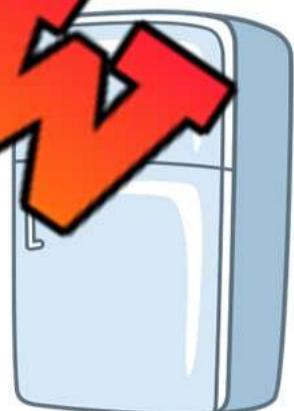

What is Melting?

Melting is the process of a solid changing into a liquid when heat is applied.

For example, an ice cube in a freezer will remain a solid because there is no heat added. If

you take the ice cube out of the freezer, the temperature is warmer, which means the ice will absorb the heat.

Freezing, Melting and Boiling points of water



What is a Melting Point?

All solids have a melting point. The melting point for ice is 0°C. If you take an ice cube out of a freezer and then bring it outside into an environment colder than 0°C, it will stay a solid because it hasn't reached its melting point.

Room temperature is about 20°C. This means that ice melts fast when it is at room temperature.

Did you notice that the freezing and melting points are the same? This means that liquid water will freeze at below 0 and frozen water will melt at above zero.

Fill in the Blanks

Write the missing word on the line

Word Bank

Solid	Melting	Liquid	Temperature	Same
Gas	Boiling			

Melting happens when a _____ reaches a temperature warmer than its melting point, turning it into a _____. For example, an ice cube melts at a _____ warmer than 0 degrees Celsius. The melting point is the _____ at which a liquid turns to a solid. Liquids don't melt, however they do have a _____ point, where the temperature starts to a _____.
PREVIEW

Questions

Answer the questions below

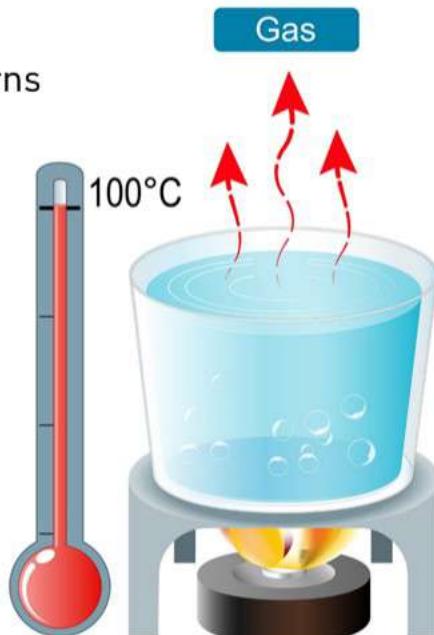
1) What happens when a solid reaches its melting point?
ANSWER

2) When have you seen a solid reach its melting point?
ANSWER

Boiling Point

What Does Boiling Point Mean?

The **boiling point** is the temperature at which a liquid turns into a gas. For example, water boils and turns into steam when it reaches 100 degrees Celsius.


Different liquids have different boiling points. When cooking or baking, it is helpful to use different temperatures depending on what you're making. For example, many liquids have different boiling points, meaning you might need to turn some on high.

It is also helpful to boil water that we can drink. We can clean dirty water by boiling it. When we boil water, we kill harmful bacteria, viruses, and parasites that might be in the water. This means if you ever need to clean water, you can boil it to kill the little living things in your water.

Different Boiling Points of Liquids

Depending on the liquid being heated, it will take longer to heat to the boiling point. Ethanol will boil at 78.5 degrees Celsius while carbon dioxide will not boil until it is heated to 204 degrees Celsius.

- Water: 100 degrees Celsius
- Olive oil: 205 degrees Celsius
- Peanut oil: 165 degrees Celsius
- Coconut oil: 177 degrees Celsius
- Vegetable oil: 180 degrees Celsius
- Butter: 150 degrees Celsius
- Mercury: 357 degrees Celsius

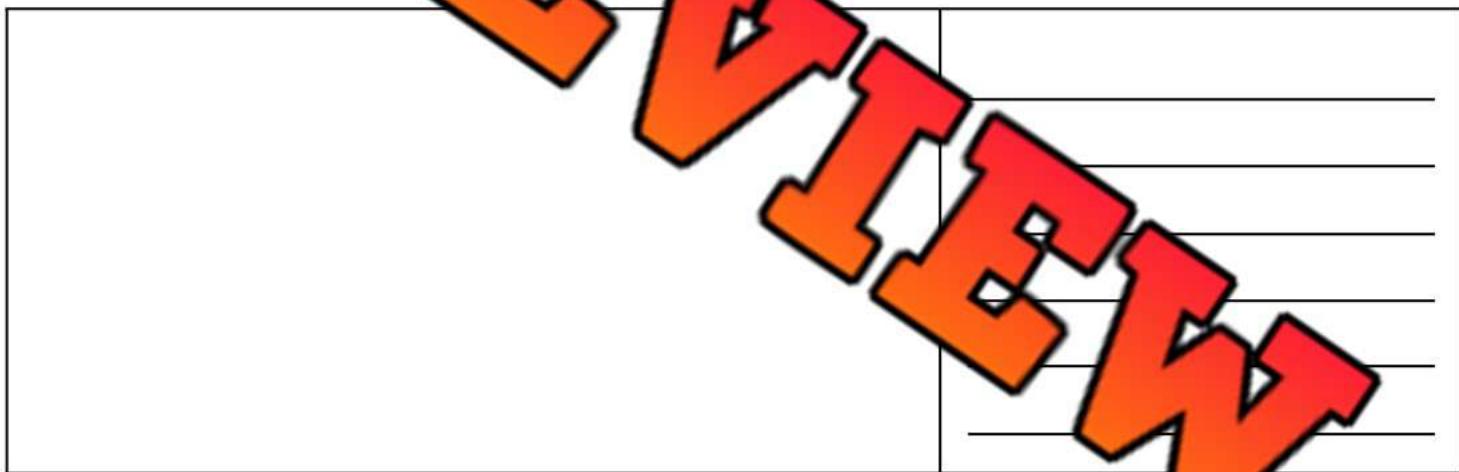
Boiling point

Questions

Use information from the text to support your answer

1) What does the boiling point of a liquid mean?

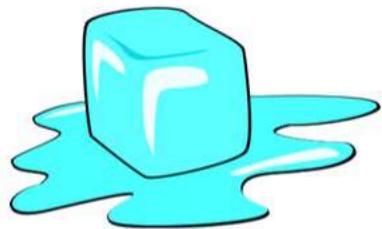
2) How is the boiling point different in different liquids?



Visualizing

Draw what you saw in your mind while you were reading. Explain the picture

True or False


Circle whether the statement is true or false

1) Butter will boil at a lower temperature than water	True	False
2) You will need to boil water at a higher temperature than mercury	True	False
3) All liquids boil at 100 degrees Celsius	True	False
4) Boiling water will kill bacteria, parasites, and viruses	True	False
5) The boiling point of a liquid is when it will turn into a solid	True	False

Freezing Point


Freezing and Freezing Points

Freezing is the opposite of melting. **Freezing** is when a liquid changes state to a solid. Different liquids have different freezing points. Water has a freezing point of 0 degrees Celsius. Check out the graph below to see other liquid's freezing points.

Understanding Science to Help Our Lives

Water will freeze at 0°C , which means it would not make good anti-freeze for your car. Anti-freeze is used to stop water from freezing and damaging a car's engine. Anti-freeze is made of ethylene glycol, which has a freezing point of -20°C .

Windshield wiper fluid is made of methanol. Methanol has a freezing point of -96°C . This makes it a great choice to clean our windshields on very cold days!

When the weather is below 0, we need to drive very carefully as water on the roads will freeze and turn into slippery ice.

Fill in the Blanks

Write the missing word on the line

1)	Liquid water will freeze when the temperature is _____ zero.	Below / Above
2)	Water can be a liquid or a _____.	Mud / Solid
3)	Different liquids have different freezing _____.	Points / Places
4)	Water has a freezing point of _____ degrees Celsius.	-20 / -96
5)	When the temperature is below zero, there could be _____ on the road.	Ice / Rain

Questions

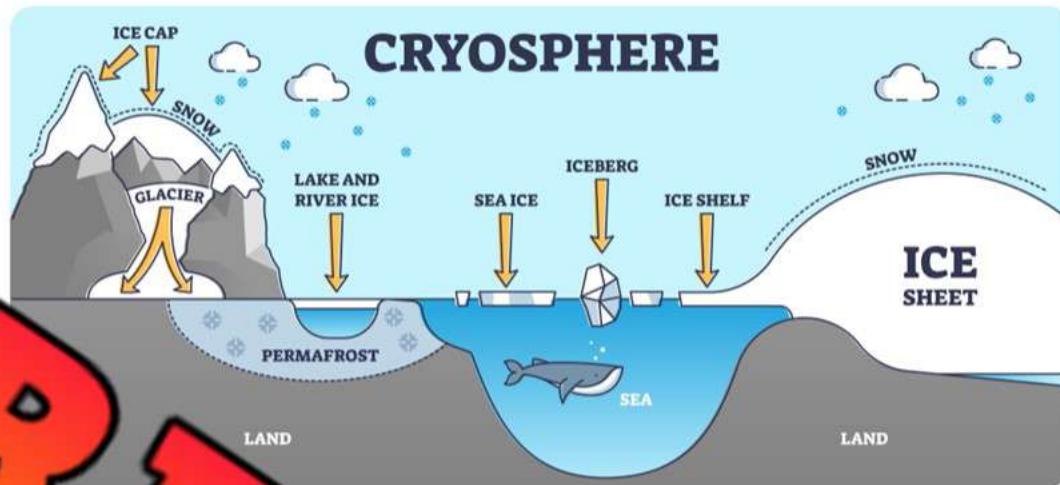
Answer the questions below

1) How does water freeze?

2) How can freezing water be dangerous?

Making Connections

What does this reading remind you of in your life?


Cryosphere - Glaciers

What is the Cryosphere?

The **cryosphere** is the part of the earth's surface that has some water - it

What is a glacier?

A glacier is a moving, large piece of ice that forms over a long period of time. Most glaciers are made of freshwater and are cold.

PREVIEW

- Ice Sheet – Ice sheets are the largest type of ice body. Ice sheets are the size of continents as they must be bigger than 50,000 square kilometres. The only ice sheets on Earth are in Antarctica and Greenland.
- Ice Cap – Ice caps are smaller than ice sheets, and are the least than 50,000 square kilometres. Most ice caps are found near the North and South Poles of the earth. Canada has the Devon Ice Cap on Devon Island in Nunavut.
- Icebergs – Icebergs are floating pieces of ice that are more than 15 metres long. They are found in oceans or lakes. Icebergs are made when they break off a larger glacier. Icebergs are made of freshwater, as they begin their live on land.
- Sea Ice – Sea ice is frozen ocean water; therefore, it is made of saltwater. Sea ice floats on the ocean's surface.
- Ice Shelf – Ice shelves are permanent floating sheets of ice that are connected to a landmass. When ice breaks off an ice shelf, it can become an iceberg.

Questions Use information from the text to support your answer

1) What is a glacier?

2) What is an ice sheet? Where are they found?

Order Put the glaciers below in order of size from smallest (1) to largest (6)

Iceberg	Ice Cap	Ice Sheet	Sea Ice	Lake/River Ice

Multiple Choice

Circle the best answer

1) The largest glacier is an	Ice cap	Ice sheet
2) An ice sheet must be larger than	100,000 km ²	50,000 km ²
3) A glacier that is smaller and is made of freshwater	Sea Ice	Iceberg
4) Sea Ice is made of	Freshwater	Saltwater
5) Most glaciers are made of...	Freshwater	Saltwater
6) Glaciers are...	Moving	Still

Evaporation

What is Evaporation?

Evaporation is the process in which a liquid turns into a gas. Evaporation happens when a liquid is heated to the point that the liquid particles begin moving faster. As the particles move faster, they begin to collide with each other. This results in the liquid becoming a gas as the particles become far apart.

Evaporation or Boiling

During evaporation, only the liquid at the surface (top) will turn into a gas.

During **boiling**, the particles throughout the liquid are also changing into a gas. Therefore, boiling requires the liquid to be exposed to a lot of heat but evaporation can happen even at room temperature. That is why your wet shirt will "dry" after gym class – yuck!

Fill in the blanks below using words from the word bank

Word Bank

Liquid	Evaporate	Faster	Disappear
Gas	Warm		

The process of a _____ changing into a _____ is called _____. A liquid will turn into a gas as a result of _____. When a liquid is heated by the liquid. A spill will _____ as a result of being evaporated. The steam from a kettle is a _____. The _____ of the kettle is the temperature of the liquid will evaporate.

Questions Answer the questions below

1) Why do hand dryers use hot air instead of just air?

2) Where does the water go when it evaporates from a liquid?

3) Name some examples of when you have seen evaporation.

Examples of Evaporation

Evaporation at Home

At home, evaporation happens often. We understand that the water used to clean our clothes will evaporate when we hang them or when we put them in a drying machine.

When we spill a drink on a table, we will notice it will dry hours later. This is due to evaporation. If the drink was sugary, there will be a residue substance left on the table.

Evaporation in the Community

In the community, we will see it during a rainy day. During a rainy day, everything is wet and covered in water. Once it stops raining, the process of evaporation will dry up the puddles. If the sun is out, the evaporation process will happen even faster.

Evaporation in the Natural Environment

Animals use the process of evaporation to cool them down. They use **evaporative cooling** to regulate their body temperature. They do this by swimming in water or by wallowing in mud. The water is then evaporated off their bodies just like how humans sweat is evaporated.

Some animals also pant, which means they breathe rapidly with their mouth open to increase evaporation from the hot air they release from their mouths.

In the natural environment, we will notice that water levels in ponds, lakes, and rivers will lower after several hot days without rain. Rainfall will often even out the evaporation. When we see rain, it is because water from rivers, lakes, and ponds is evaporated and formed into a raincloud. Evaporation is key for our water cycle.

Questions Use information from the text to support your answer

1) What is evaporation?

2) When have you seen evaporation today or recently? Describe it.

Examples Write examples of evaporation in the settings below

At Home

In the
Community

In the Natural
Environment

PREVIEW

Lab Experiment - Evaporation

Research Question

What are we trying to answer?

- 1) What happens to water after it rains?
- 2) How does the sun, shade, and wind affect the process of evaporation?

Hypothesis

Answer the research questions below before we do the experiment

1) What happens to water after it rains?

2) How does the sun affect evaporation? Does shade speed up or slow down evaporation?

3) How does wind affect evaporation?

Materials

What you will need for the experiment

- 1) Pail/cup of water for each student
- 2) Paintbrush for each student
- 3) Chalk for each student
- 4) Stopwatch - optional

Procedure

Instructions – How to complete the experiment

- 1) Go outside and use the water and paintbrush to paint a simple picture on pavement in the sun
- 2) Use the chalk to make an outline of your picture
- 3) Use the results page to track how your picture looks after 2 minutes, 5 minutes, and 10 minutes.
- 4) Next, complete the steps above in a new shady location. Compare the results.
- 5) Lastly, complete the steps above but this time, blow on your picture or use a fan to simulate wind. You could also draw your picture on the side of the school as it will receive more wind than the pavement.

Lab Experiment - Evaporation Results

Observations Fill in the table below as you complete the experiment

Location	Time	Observations - Examples Below
Sunny Location	After 2 Minutes	- No evaporation - Half evaporated - Completely evaporated
	After 5 Minutes	
	After 10 Minutes	
Shady Location	After 2 Minutes	
	After 5 Minutes	
	After 10 Minutes	
Windy Location	After 2 Minutes	
	After 5 Minutes	
	After 10 Minutes	

Results Answer the research questions now that you have completed the experiment

What happens to water after it rains?

How does the sun affect evaporation? Does shade speed up or slow down evaporation?

How does wind affect evaporation?

Condensation

What is Condensation?

Condensation is when water changes from a gas to a liquid. Condensation is the opposite of evaporation, which is the changing of water from a liquid to a gas.

Why Does Condensation Happen?

Condensation happens when a gas touches a cooler surface. The cooler surface will cause the gas to release heat. When the gas cools, the particles begin to slow down, causing them to be more attracted to each other and turn into water droplets.

Condensation on my...

Have you ever noticed that your cold drink "sweats" on a hot day? Well, your drink doesn't actually sweat, but condensation is occurring. On a hot day, there is a lot of water vapour in the air (a lot of evaporation). When this warm air makes contact with your cold glass, the water vapour in the air condenses on the side of your glass. This forms water droplets on the cold surface.

Water Cycle – Formation of Clouds

Condensation is very important in the water cycle. As water from lakes, rivers, and oceans evaporate, the water vapour goes up into the atmosphere. It doesn't disappear! Instead, it rises until it comes into contact with a colder surface. In our atmosphere, the water vapour commonly clings to dust particles, salt crystals, or ice crystals from volcanoes.

We usually think of clouds only being in the sky, but they can be on the ground level too! When we see a cloud near the ground, we call it fog. Walking through fog is just like walking through a cloud!

Visualizing

What were you picturing while you were reading? Draw it!

What words from the text made you draw this picture?

Multiple Choice

Circle the correct answer

1) Condensation is when...

- a) vapor/gas turns into a liquid
- b) liquids turn into a gas
- c) a solid melts into a liquid
- d) a gas turns into a solid

2) Condensation happens when...

- a) water vapour suddenly freezes
- b) water droplets form a liquid
- c) water freezes into ice
- d) water heats up into a vapour

Fill in the _____

Fill in the blanks using words from the word bank

Word Bank

Condensation	Condenses	Vapour	Volcanoes
Droplets	Water	Surfaces	Cold

Condensation occurs when _____ is evaporated and _____ into water droplets. _____ from the evaporation collects on a _____ surface. This can be seen when a soft drink has water _____ on the can. The process of the water forming water droplets is called _____. A common example of condensation is the formation of _____. Evaporated water from lakes, rivers, and _____ is collected in the air, like dust, salt, bacteria, or even ash _____.

Question

What is happening in the picture?

Lab Experiment - Condensation

Research Question What are we trying to answer?

Will hot water evaporate and condense on a colder surface? What will happen with the condensed water droplets?

Hypothesis Answer the research questions below before we do the experiment

1) Will hot water evaporate and condense on a colder surface? Explain.

2) What will happen with the condensed water droplets?

Materials What you will need for the experiment

- 1) 1 cup per group/person (glass or see-through)
- 2) 1 plate per group/person
- 3) Approximately 5-10 ice cubes per group
- 4) Hot Water

Procedure Instructions – How to complete the experiment

- 1) Pour about 5-10cm of hot water into the cup
- 2) Quickly put the plate on top of the cup and let it sit for about 30-40 seconds
- 3) Put your ice cubes on top of the plate
- 4) Record what happens!

Lab Experiment - Condensation Results

Observations

Fill in the table below as you complete the experiment

Step	What Happened
After hot water was poured and the plate was placed on top of the cup.	_____
After the ice was added to the water.	_____

Results

Answer the questions below that you completed the experiment

1) How was this experiment an example of condensation?

2) When the water poured down the side of the glass, what did that tell you about the environment?

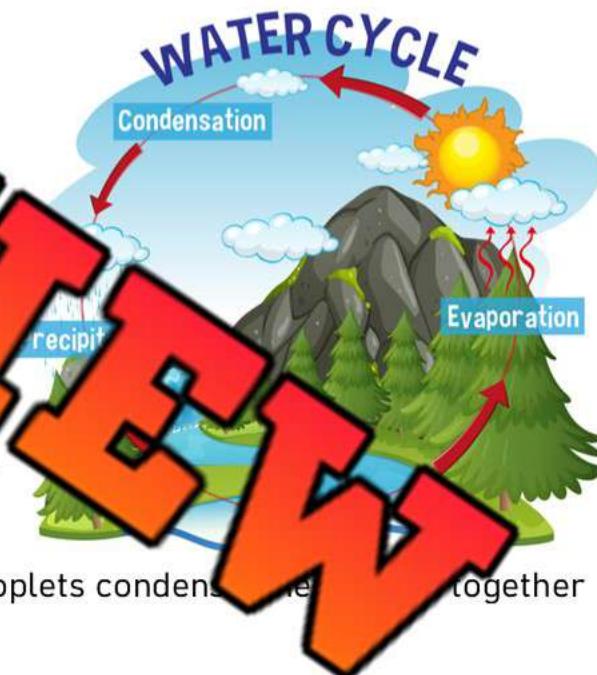
3) Why did the water pour down the sides of the cup? How does this relate to our real-world water cycle?

Water Cycle

What is the Water Cycle?

Have you ever wondered where water goes after a heavy rainfall? Those puddles don't simply disappear! Water moves from one part of the environment to another.

No water is ever lost. The water is recycled. It goes through what we call the water cycle. The ~~water~~ **water cycle** is the movement of water between the Earth's surface and the air, changing from liquid to gas and gas to liquid.


How Does Water Get Around?

The water in the ~~water~~ **water cycle** moves through 4 main stages – evaporation, condensation, precipitation, and collection.

Evaporation

Heat from the Sun turns water into vapour. This happens in oceans, seas, streams, ponds, and even puddles into water vapour.

The rising water vapour goes up in the sky and cools down.

Condensation

When the water vapour rises high into the air, it cools.

When it cools enough, the water vapour condenses and turns into water droplets. When enough water droplets condense together and form a cloud.

Precipitation

As more and more water droplets add to a cloud, they become too heavy to stay in the air.

The water droplets in the cloud fall to the Earth's surface as precipitation. **Precipitation** is the process of any form of water dropping to the Earth.

Collection

The water that falls from the clouds as rain or snow lands on the Earth. This water collects in oceans, rivers, lakes, and streams. Now it can be evaporated again!

Questions

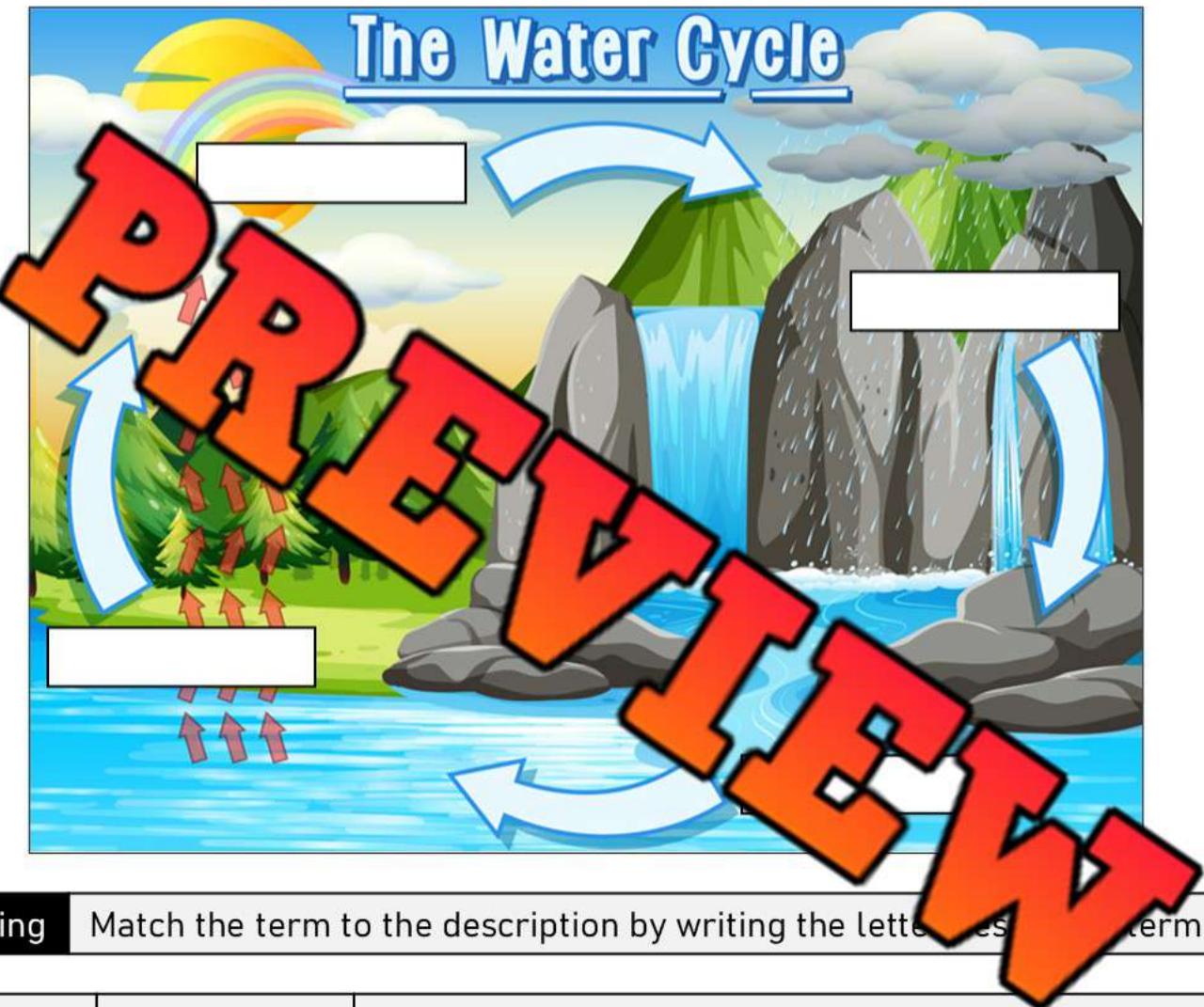
Use information from the text to support your answer

1) How does water change states from a liquid to a gas in the water cycle? What does that make?

2) How would life be different if water didn't change states in the water cycle?

Multiple Choice

1. When liquid turns into a gas	Condensation	Evaporation
2. When gas turns into a liquid	Condensation	Evaporation
3. When water falls from clouds	Evaporation	Precipitation
4. Precipitation can fall as...	Rocks	
5. Condensation leads to...	Puddles	


Visualizing

Draw what you were picturing while you were reading the story _____

Water Cycle Diagram

Diagram

Write the stages of the water cycle on the blanks below
Evaporation, Collection, Condensation, Precipitation

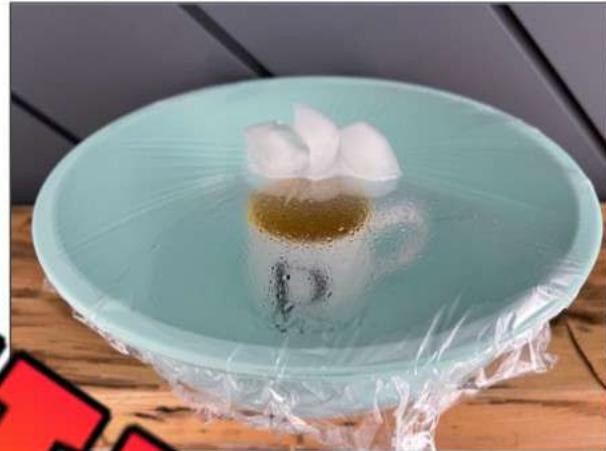
Matching

Match the term to the description by writing the letter of the term

Answer	Term	Description
	Precipitation	a) Water stays in oceans, lakes, and rivers
	Condensation	b) Water falls from the sky
	Evaporation	c) Water is heated and turns to water vapour that rises
	Collection	d) Water cools and turns into water droplets in clouds

Experiment - Water Cycle

Research Question


How does water move through our environment?

How does the heating and cooling of water move water around our environment?

Materials

What do we need?

- ✓ Large bowl
- ✓ Mug or small bowl
- ✓ Plastic wrap
- ✓ String or large piece of elastic
- ✓ Hot water – optional. You can use cold water as well
- ✓ Ice Cubes – optional

Method

How do we complete the experiment?

PREVIEW

- 1) Place the cup or mug in the middle of the bowl.
- 2) Fill the bowl with hot water about 2/3 of the way up. Add cold water inside the cup.
- 3) Cover the bowl with the plastic wrap. Use the elastic or the string to secure the plastic to the top of the bowl.
- 4) Place a few ice cubes on the plastic wrap above the cup.
- 5) If you used cold water, put the bowl in the sun for a couple of hours.
- 6) If you used hot water, you should see condensation clinging to the plastic wrap.
- 7) Label the diagram on the back of the page.

Diagram Label the diagram using the word bank

Precipitation

Condensation

Collection

Evaporation

Results Label the stages of the water cycle below

The water that is in the cup

When the water went up to the top of the bowl

When the water stuck to the plastic wrap

When the water fell from the plastic wrap

Coding - Supercomputers Predicting Weather

A **meteorologist** is someone who studies the air to predict the weather. Meteorologists use the temperatures of the air as well as the air movement to predict if it will rain, snow, or storm.

Meteorologists need data to make their predictions. They get their data from satellites in the sky. These satellites move around the Earth, taking pictures and tracking the movement of air.

On land, supercomputers used by meteorologists can process quadrillions of calculations per second. The data from the satellites is automatically sent to these computers through special sets of code. The supercomputers make models of what the weather will look like so that meteorologists can study them. All of this is possible because of the codes that tell the technology what to do.

Fill in the Blanks

the following words to fill in the blanks

models	coding	data	weather
--------	--------	------	---------

- 1) A meteorologist is someone who studies _____.
- 2) Meteorologists can predict the _____.
- 3) Satellites collect _____ from the in the sky.
- 4) Supercomputers make _____ of what the weather _____ look like.
- 5) We wouldn't be able to predict the weather without _____.

Directions Read the if statement and come up with your own then statement

1)	If it is cold outside	then	
2)	If it is going to rain today	then	
3)	If it is going to snow today	then	
4)	If there is lightning today	then	

Investigate - Local Weather

Weather Reports

A weather report is a prediction of what the skies will bring to an area. The weather report uses tools and data to measure the air pressure, wind speed, and movement of weather fronts.

The data from these tools give meteorologists the ability to make strong predictions of the upcoming weather. The weather report predicts the short-term forecast (usually 36 hours) with a higher accuracy than the 14-day forecast.

Weather reports give information about your local weather

Weather Conditions	Information
Temperature	
Relative Humidity	
Wind Speed and Direction	
Probability of Precipitation (%)	
Type of Precipitation	
Sunny/Cloudy?	

Questions

Answer the questions below

1) How does the weather look for the next couple of days?

2) Is there any extreme weather coming in the next 14 days – snowstorms or lightning?

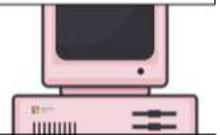
Investigate - Weather Report

Pretend you are a weather network meteorologist. Write what you will tell your audience about the weather over the next 14 days. Use some of the ideas below.

- Should they plan for surfing or skiing?
- Should they be staying inside?
- Should they be golfing?
- Should they be finding shelter in the case of lightning?
- Should they rent some movies this week?
- Should they water their gardens because there isn't rain anymore?

Writing Write a weather report on the weather in your area in the next 14 days

PREVIEW


Writing Code - Weather Reports

When data is collected from supercomputers, codes are used to display predictions about the weather. Check out the example below.

Input
dark clouds full of rain are coming
winds are strong, over 100 kph
the temperature is 2° C

Output
It will rain today
It will be windy and a tornado is possible
The temperature is cool, almost freezing

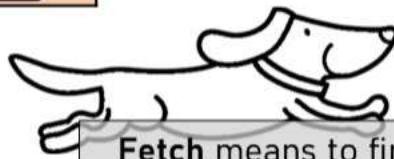
Coding Write a code that goes with the inputted data

Input	Outputs
There are no clouds in the sky	
The wind is 0kph	
The temperature is 25° C	

Input
Lightning clouds are on the way
The wind is weak at 5kph
The temperature is 20° C

Outputs

Input
Clouds full of water are coming
The wind is 15kph
The temperature is -30° C


Outputs

Coding: Storing Data - Weather Forecast

When we write code, we sometimes need to store data to be used later. We can store the data and name it a variable. A **variable** is a quantity that changes. We can use letters or words to represent the changing quantity.

Example – A program that collects data from a supercomputer

```
Fetch rainfall percentage as the variable rain  
Display rain on the screen  
If rain is more than 50%  
Then display "It probably rain today"
```


Fetch means to find data

Coding Write your own code that collects wind, rain, and temperature data and displays it as a message on the screen

1)

PREVIEW

2)

3)

If/Else Statements - Predicting Weather

When precipitation is expected, the precipitation can take the form of rain, snow, sleet or freezing rain. An if statement could be used to display which type of precipitation will fall.

Reminder:

- **Rain** – starts as snow and melts in warm air and stays melted (liquid)
- **Freezing rain** – starts as snow and then melts in warm air and refreezes on the ground because it is frozen
- **Sleet** – starts as snow and melts in warm air and then refreezes before reaches the ground
- **Snow** – starts as snow and stays frozen

Directions: Imagine the app displays which type of weather is coming. Write the Then statements that would follow the If statements.

1) IF the snow stays on the ground

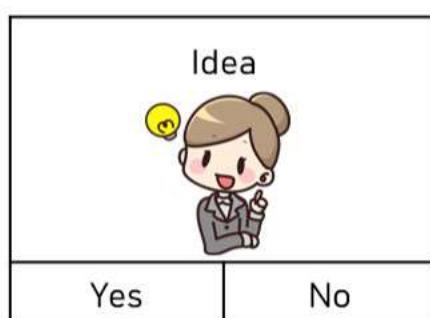
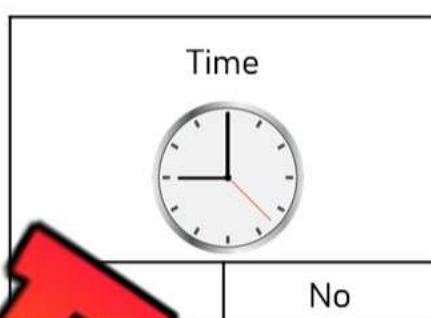
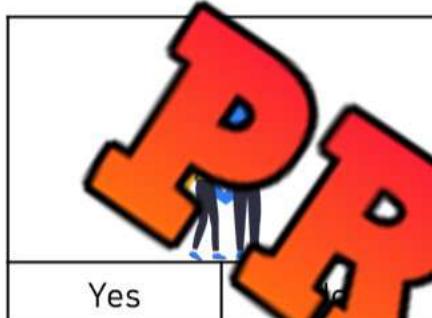
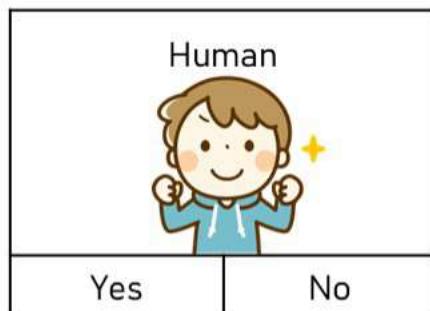
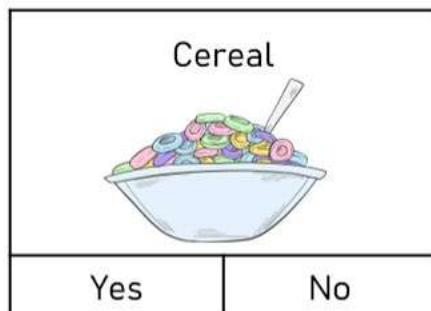
THEN display, "

2) IF the snow melts and stays melted

3) IF the snow stays frozen

4) IF the snow melts and then refreezes before reaching the ground

Directions Draw one screen of the app displaying one of the then statements above

Unit Test - Matter**Multiple Choice****Circle the best answer. Only choose 1 answer!**

1. Which state of matter below takes the shape of its container? a) Liquids b) Solids c) Rock d) All of the above	2. Which of the following is an example of a liquid? a) Table b) Peanut Butter c) Wood d) Rock
3. Everything that has mass and takes up space is... a) Particles b) Sublimation c) Matter d) Energy	4. When a solid turns to a liquid... a) Freezing b) Sublimation c) Melting (Fusion) d) Evaporation
5. When a liquid turns into a solid... a) Freezing b) Sublimation c) Melting (Fusion) d) Evaporation	6. When a liquid turns to a gas... a) Condensation b) Sublimation c) Melting (Fusion) d) Evaporation
7. When a gas turns into a liquid... a) Condensation b) Sublimation c) Melting (Fusion) d) Evaporation	8. Condensation happens when... a) water vapour suddenly freezes b) water droplets form a liquid c) water freezes into ice d) water heats up into a vapour
9. When a solid turns directly into a gas... a) Condensation b) Sublimation c) Melting (Fusion) d) Evaporation	10. When snow turns to rain, it is a... a) Solid staying a solid b) A liquid turning into a solid c) A solid turning into a liquid d) A liquid staying a liquid

Matter – Yes or No?

Is the example matter – yes or no?

Label the Water Cycle diagram

Evaporation

Precipitation

Condensation

Collection

Definitions

What does each term mean? (1 mark each)

Term	Definition (what does it mean)
Freezing Point	
Matter	

Short Answer

Answer the following questions – Each question is worth 2 marks

1) What happens to the particles in a solid when it is heated?

2) Write two examples of evaporation.

3) Explain how water goes through the 3 phases of matter?
