

Preview - Information

Thank you for your interest in this Mega Bundle. This product contains multiple Workbooks and Google Lesson Slides. Within this preview, you will see:

- ✓ **A selection of Ready-To-Use Google Lesson Slides for each unit.**
- ✓ **A selection of worksheets included in each workbook.**

When you make a purchase, you will receive a folder that contains each of the .pdf workbook files and links to where you can make copies of the Google Lessons units to your Google Drive.

Thank you for shopping with us. Please let us know if you have any questions at:

rob@supersimplesheets.com

Google Slides Lessons Preview

Ontario Geography

Physical Patterns in a Changing World- Grade 7

3-Part Lesson Format

Part 1 – Minds On!

- Learning Goals
- Discussion Questions
- Quotes
- And More!

Landform Processes

DISCUSSION QUESTIONS

1. What do you think is inside the Earth if we could cut it open?
2. Do you think the inside is solid, liquid, or something else?
3. Do you think it's hot or cold inside the Earth? Why?
4. How might the inside of the Earth help shape landforms?

Landform Processes

Match the words to their short, simple meanings.

1) Landform
2) Weathering
3) Erosion
4) Volcano
5) Earthquakes
6) Tectonic Plates
7) Mantle
8) Crust
9) Magna
10) Core

- A) Movement of soil and rock by wind, water, or ice
- B) Large pieces of crust that slowly move on the mantle
- C) Sudden shaking of the ground from plate movement
- D) Molten rock inside the Earth
- E) Outer shape or feature on Earth's surface
- F) Solid outer layer of the Earth we live on
- G) Hottest, deepest layer of the Earth's inside
- H) Wearing down rocks into smaller pieces
- I) Very hot rock layer under the crust that moves slowly
- J) Molten rock erupting through the surface to make landform

Part 2 – Action!

- Surveys/Polls
- Matching
- Drag and Drop
- Videos
- And More!

Part 3 – Consolidation!

- Exit Cards
- Quick Draw
- 3-2-1 Reflection
- One-Sentence Summary

Consolidation

DRAW AND LABEL

Draw and label five examples of **landforms** found in Canada. Include their names, shapes, and one short fact about each to show what makes them special.

Ontario Geography

Physical Patterns in a Changing World- Grade 7

Volcanoes

Drag and place the terms into the blanks to complete the sentences.

1. [] is hot, melted rock found under the Earth's crust.

2. When magma reaches the Earth's surface, it is called [].

3. [] volcanoes have gentle slopes made from thin, fast-flowing lava.

4. Tall, cone-shaped volcanoes made from many eruptions are called [].

5. [] volcanoes are small and formed from one short eruption.

6. The largest volcano on Earth is [] in Hawaii.

7. [] is the tallest volcano when measured from the ocean floor.

8. The [] is the most active volcanic zone in the world.

Shield
Cinder Cone
Mauna Kea
Lava
Mauna Loa
Ring of Fire
Hotspot
Stratovolcanoes

Valleys

Drag the letter A or B into the box to show your answer.

1. Which valleys are shaped by moving glaciers? A) U-shaped B) V-shaped

2. Which valleys are created along fault lines? A) River B) Tectonic

3. Which valley type is found in lowlands? A) Glacier B) River

4. Which valleys form in high mountain areas? A) Glacial B) River

5. Which valleys form in soft rock faster? A) Narrow B) Wide

6. Which Canadian valley is river-carved? A) Fraser B) Okanagan

7. Which valleys often have fertile soil? A) Tectonic B) River

8. Which valleys can be several kilometres wide? A) River B) Glacial

CROSSWORD

Do the crossword puzzle below about wetlands.

Across

2) Wetland with trees, spongy land, and flooded plants.

4) Small still water body, natural or made by humans.

5) Wetland with basic soil and many wildflowers.

Down

1) Wetland without trees, home to birds, fish, and frogs.

2) Soil or sand carried by water and dropped in wetlands.

3) Wetland with peat, acidic water, and low nutrients.

Ontario Geography

Physical Patterns in a Changing World- Grade 7

Invasive Species

Find the words in the wordsearch.

Zebra	Mussel
Purple	Loosestrife
Ballast	Plankton
Wetland	Crops
Beetles	Native
Invasive	Species

Wordsearch grid:

```

  K S P E C I E S Y N L R W Y N U U D R S
  J D S I W P J F E C A K P Q T O U D S B
  X K M L N J U L D O O S E S T R I F E B U
  R F M U W V I R B E D E E G V O O X D J
  J T A J S E A N F V T S V I Z E B R A X
  W H J C Y S T S F L S E L T E E B T M A
  M M E M O W E L I F L S E L T E E B T M A
  J A A M E O C L A V R S P O R C V A J U
  R D N A M K A I K N S L O Z N E I L L B
  K V U F X J C P S R D R J G F A T L Z R
  Y K V R B F Z I F N S C K S C G A A J P
  T J V N O R X P L A N K T O N J N B P T
  
```

El Niño Activity

Decide if the statement is about El Niño or La Niña.

- This event happens when Trade Winds became weaker than normal.
- Warmer water moves east toward South America.
- Can make Atlantic hurricane seasons stronger.
- This event happens when Trade Winds blow stronger than normal.
- Brings warmer, drier winters to western Canada and Pacific Northwest.
- Cooler water builds up along South America's coast.
- Pushes the Jet Stream farther north than usual.
- Causes heavy rain and flooding in the southern United States.
- Often causes wetter summers in Australia; sometimes with flooding.
- Pushes the Jet Stream farther south than usual.

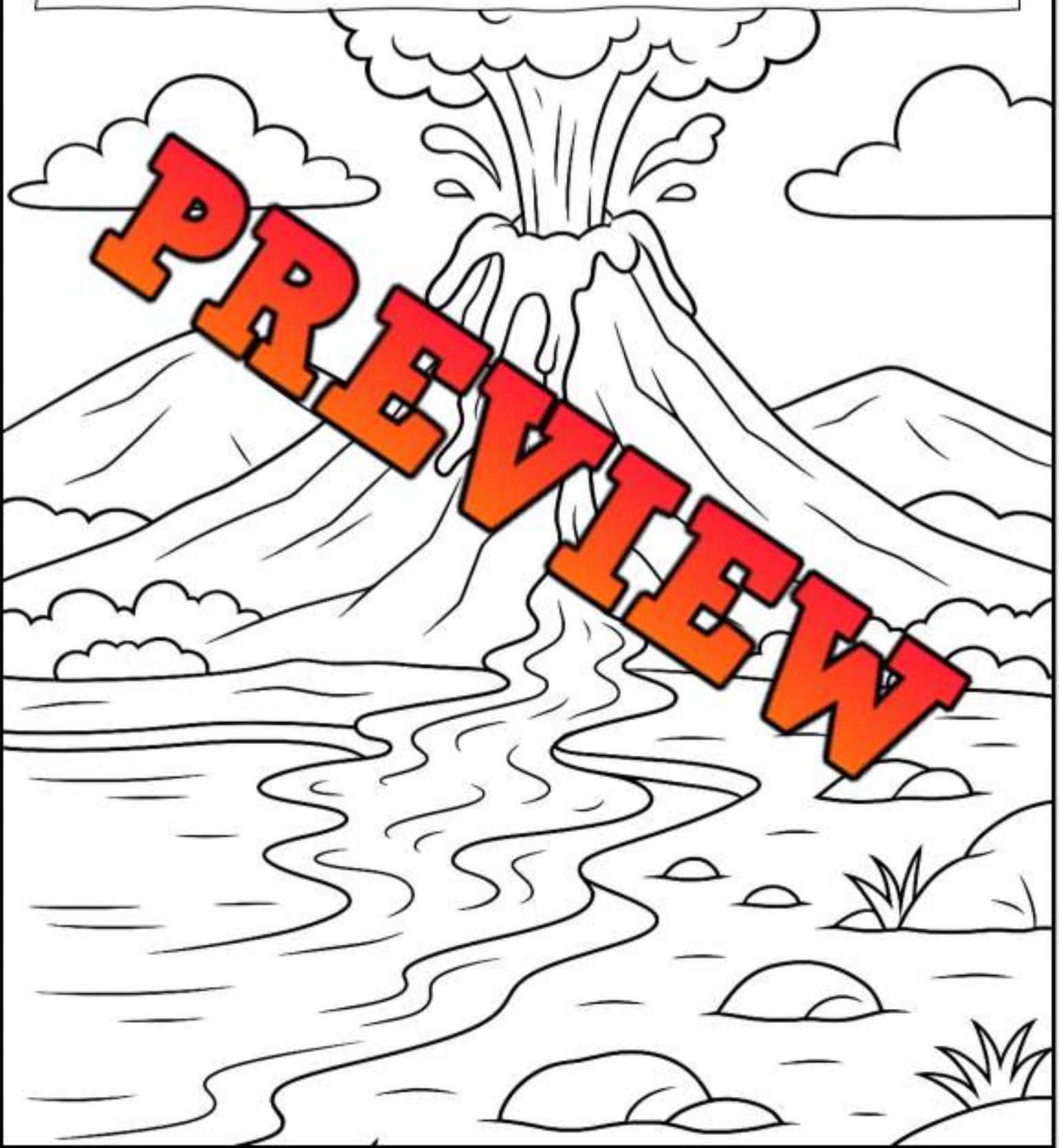
Topographical Map

Find the clue & match the correct contour line pattern.

Cause	Effect
Lines very close together all the way around the hill	A Peak
Lines close together on one side; far apart on the other	B Steep slope
Large loops spreading farther out from the centre	C One steep side
Lines far apart with only gentle curves between them	D Lower elevation
Several loops forming a long narrow shape between higher ground	E Gentle slope
Smallest loop in the centre of all other loops	F Valley

Workbook Preview

Grade 7 Geography Unit


A. PHYSICAL PATTERNS IN A CHANGING WORLD

	Curriculum Expectations	Pages
A1.1	Describe various ways in which people have responded to challenges and opportunities presented by the physical environment, and analyse short- and long-term effects of some of these responses	8-10, 18-21, 27-28, 32-38, 42-50, 59-63, 89-90, 97-102
A1.2	Compare and contrast the perspectives of some different groups on the challenges and opportunities presented by the natural environment	57-58, 91-93
A1.3	Assess the physical environment in various locations around the world to determine which environment or environments have the greatest impact on people	13-17, 22-26, 39-41, 76-78, 82-83
A1.4	<p>A er pe th</p> <p>Preview of 80 pages from this product that contains 148 pages total.</p>	
A2.1	<p>F na er pe</p>	
A2.2	Gather and organize data and information from a variety of sources, and using various technologies, on the impact of natural events and/or human activities that change the physical environment, ensuring that their sources reflect more than one perspective	8-10, 15-19, 22-24, 27-28, 51-53, 68-75, 79-81, 91-93
A2.3	Analyse and construct maps as part of their investigations into the impact of natural events and/or human activities that change the physical environment, with a focus on investigating the spatial boundaries of the impact	94-96
A2.4	Interpret and analyse data and information relevant to their investigations, using various tools and spatial technologies	25-26, 51-53, 79-81, 94-96
A2.5	Evaluate evidence and draw conclusions about the impact of natural events and/or human activities that change the physical environment	20-21, 32-53, 57-83, 89-90
A2.6	Communicate the results of their inquiries, using appropriate vocabulary (e.g., climate, land use, landforms, vegetation, drought, flood, climate change, agriculture, ecotourism, land reclamation) and formats appropriate for specific audiences	54-56, 68-75, 84-88, 91-93

	Curriculum Expectations	Pages
A3.1	Identify the location and describe the physical characteristics of various landforms (e.g., mountains, plateaus, plains, valleys)	8-10, 13-17, 22-31, 54-56, 94-96
A3.2	Describe some key natural processes and human activities (e.g., tectonic forces, weathering and erosion, deposition, glaciation, mining, land-reclamation projects) that create and change landforms	8-38, 42-47, 54-56, 84-90
A3.3	Demonstrate the ability to extract information from and analyse topographical maps (e.g., construct a cross-section of a landform based on the information from a topographical map)	51-53, 94-96
A3.4	Describe patterns and physical characteristics of some major water bodies and systems around the world (e.g., river systems, drainage basins, lakes, oceans)	11-12, 18-19, 48-50, 76-78
A3.5	Describe some key natural processes and human activities (e.g., changes in rainfall, melting of glaciers, erosion, rising sea levels, climate change, constructing dams, irrigation, bottling water from aquifers) that create and change water bodies and systems	20-21, 32-50, 82-83
A3.6	Describe patterns and characteristics of major climate regions around the world (e.g., characteristics and location of tropical, dry, temperate, continental, and polar climate regions)	59-60
A3.7	Describe some key natural processes and other factors, including human activities (e.g., ocean currents, wind systems, latitude, elevation, bodies of water, landforms, deforestation, human activities that result in greenhouse gas emissions) that create and change climate patterns	76-88
A3.8	Analyse and construct climate graphs to gather information on and illustrate climate patterns for a specific location (e.g., to analyse the trend in precipitation and temperature in Singapore, Khartoum, or Warsaw over the course of a year)	76-78, 82-83
A3.9	Describe patterns and characteristics of major natural vegetation regions around the world (e.g., the location and characteristics of grasslands, boreal forests, tropical rain forests, tundra)	35-36, 39-41, 48-50, 66-67
A3.10	Describe some key natural processes and human activities (e.g., natural and human-influenced climate change, erosion of top soil, deforestation, the use of chemical fertilizers and practice of monoculture, grazing of domestic animals, activities that introduce invasive species into an environment) that create and change natural vegetation patterns	35-38, 57-60, 89-90
A3.11	Describe how different aspects of the physical environment interact with each other in two or more regions of the world (e.g., the interrelationship between vegetation, landforms, and climate in desert regions; between landforms and vegetation in a volcanic region)	57-67

PHYSICAL PATTERNS IN A CHANGING WORLD

PREVIEW

Landform Processes

Understanding Landforms

A **landform** is a natural shape or feature found on the Earth's surface. These include valleys, mountains, hills, oceans, and plains. Landforms don't stay the same forever. They are always changing, but these changes often happen very slowly. Scientists say the Earth is about 4.54 billion years old. Over this long time, landforms have shifted and moved because of powerful forces.

Some changes are small and happen slowly. For example, **Niagara Falls** is wearing away rock, moving backward, or **receding**, at a rate of about 30 cm per year today. Before 1901, it was receding much faster—1.5 metres every year. In the last 100 years, Niagara Falls has moved about 11.4 km, creating a deep, narrow **Niagara Gorge**.

Processes that Change Landforms

Landforms change because of natural forces. These are:

- **Weathering** – the breaking down of rocks
- **Erosion** – movement of soil, rock, sand, water, or ice
- **Volcanoes** – when molten rock (magma) erupts and hardens into land
- **Earthquakes** – sudden shaking that causes cracks in the land
- **Land Movement** – shifts in the earth's crust, often caused by the movement of plates
- **Human Activities** – like mining, building roads or dams

The biggest force that changes landforms is the moving water, like rivers, rain, and ocean waves.

Tectonic Plates and the Earth's Layers

The Earth can be compared to an egg with three layers:

- **Core** (like the yolk): the very hot centre, with an inner and outer part
- **Mantle** (like the egg white): made of molten rock that slowly moves
- **Crust** (like the shell): the thin outer layer we live on

The **crust** is broken into large pieces called **tectonic plates**. These plates move because the hot mantle below them is slowly moving. Some plates are under land and can be 30–150 km thick. Others are under the oceans and are thinner—just 5–15 km thick.

Movement of Tectonic Plates

The plates move in different ways:

- Some move **apart** and let magma rise up (like in the middle of the Atlantic Ocean)
- Some **collide**, and one plate slides under the other. This is happening near British Columbia, where the **Juan de Fuca Plate** is going under the **North American Plate**
- Some plates **slide past each other**, causing earthquakes

These movements shape the land by forming mountains, trenches, and volcanoes. They are one of the most important reasons landforms change.

True or False Is the statement is true or false?

1) Mountains, hills and skyscrapers are examples of landforms.	True	False
2) Landforms are characteristics of the earth surface.	True	False
3) Landforms stay the same forever.	True	False
4) Human actions like farming have no effect on how landforms change.	True	False
5) Tectonic plates are part of the earth's mantle.	True	False
6) The Earth's crust is the thickest part of the Earth's layers.	True	False

Question: Use one or more sentence from the text to support your answer.

1) List and explain how these processes can shape landforms2) Illustrate and explain the Earth's layers

Making Connections

What does this reading remind you of in your life?

_____	_____
_____	_____
_____	_____
_____	_____
_____	_____

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

Match each part of the Earth with its correct description.

	Core
	Mantle
	Crust

A) Thick layer of slowly moving melted rock inside Earth.

B) Thin outer layer where people, plants, and animals live.

C) Deepest, hottest layer made of rock and metal.

Name: _____

Mark

Match each part of the Earth with its correct description.

	Core
	Mantle
	Crust

A) Thick layer of slowly moving melted rock inside Earth.

B) Thin outer layer where people, plants, and animals live.

C) Deepest, hottest layer made of rock and metal.

Name: _____

Mark

Match each part of the Earth with its correct description.

	Core
	Mantle
	Crust

A) Thick layer of slowly moving melted rock inside Earth.

B) Thin outer layer where people, plants, and animals live.

C) Deepest, hottest layer made of rock and metal.

Name: _____

Mark

Match each part of the Earth with its correct description.

	Core
	Mantle
	Crust

A) Thick layer of slowly moving melted rock inside Earth.

B) Thin outer layer where people, plants, and animals live.

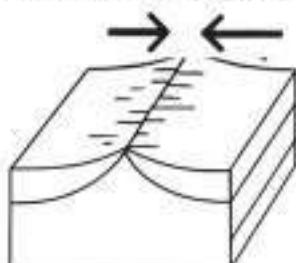
C) Deepest, hottest layer made of rock and metal.

Tectonic Plates

What Are Tectonic Plates?

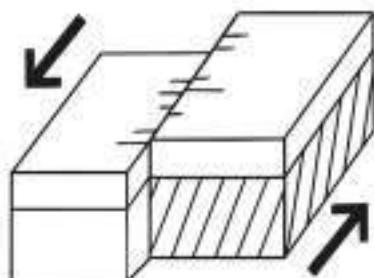
The outer layer of the Earth is called the **crust**, and it is not one solid piece. It is broken into giant slabs called **tectonic plates**. There are 7 main plates (like the North American Plate and Pacific Plate) and several smaller ones. These plates cover both land and ocean floors and fit together like a jigsaw puzzle. Tectonic plates float on a layer of **molten rock** called the mantle. Because the mantle moves slowly, it pushes the plates around. On average, a tectonic plate moves about 15 centimeters (or 6 inches) per year. That might seem small, but over millions of years, this movement has caused whole continents to drift and change shape. This is called **continental drift**.

Where Plates Move


The edges where tectonic plates meet are called **plate boundaries**. These boundaries are where many important geological events happen—like **earthquakes**, **volcanoes**, and the formation of mountain ranges. Magma (molten rock) from deep inside the Earth can rise up through cracks at the plate boundaries and form volcanoes.

PREVIEW There are three main types of tectonic plate boundaries:

1) Convergent Boundaries (Plates Pushing Together) At convergent boundaries, two plates push into each other. One of them may get pushed underneath. This is called **subduction**. These areas often have


earthquakes, mountain building, and volcanoes. For example:

- The **Himalayas** were formed when the Indian Plate collided with the Eurasian Plate.
- The **Mariana Trench**, the deepest part of the ocean in the world, was formed by the Pacific Plate being pushed under the Philippine Plate.

2) Divergent Boundaries (Plates Moving Apart) At divergent boundaries, plates move away from each other. Magma rises to fill the gap and cools to form new crust. This often happens under oceans. An example is:

The **Mid-Atlantic Ridge**, a long mountain range on the ocean floor, formed where the Eurasian and North American plates are moving apart.

3) Transform Boundaries (Plates Sliding Past) Here, plates move sideways past each other. This sideways motion builds up pressure that is released as earthquakes. A well-known example is:

The **San Andreas Fault** in California, which causes many earthquakes in that area.

True or False

Circle whether the statement is true (T) or false (F).

1) A convergent boundary is when 2 tectonic plates are pushed apart.	T	F
2) Tectonic plates move about 6 inches per year.	T	F
3) Tectonic plate boundaries are where volcanoes and earthquakes happen.	T	F
4) The San Andreas Fault is located at a divergent boundary.	T	F
5) The Mariana Trench is formed by subduction.	T	F
6) Most volcanoes and earthquakes happen far from plate boundaries.	T	F

Question: _____ and explain the three main types of tectonic plate boundaries:

PREVIEW

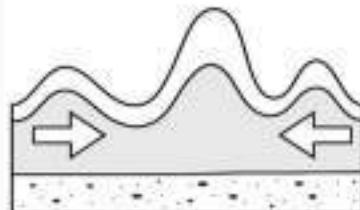
Questioning

Write at least two questions you have after reading the text.

1)	_____
2)	_____

Mountain Landform

What Are Mountains?


A **mountain** is a type of **landform** made of earth and rock that rises much higher than the land around it. Mountains must rise at least 300 metres above the land to be called a mountain. If the land is shorter than that, we call it a hill. A mountain has two main parts: the **sloped side**, which is the steep part that people often climb, and the **summit**, which is the very top of the mountain. Most mountains are not found alone. Instead, they form in long lines with many peaks. This is called a **mountain range**.

The **highest** mountain in the world is **Mount Everest**, which is 8,850 metres high. It is part of the **Himalayan Mountain Range** in Asia. This range continues to grow taller because of **tectonic plate** movement. Mount Everest rises about 40 centimetres every 100 years.

How Mountains Are Made

Mountains form in different ways depending on how the earth's tectonic plates move. These plates are pieces of the earth's crust that move slowly. There are 3 main types of mountains based on how they are made:

A) Fold Mountains

- Form when tectonic plates push together (a convergent boundary).
- Rock layers are squeezed and folded upward.
- Often made of sedimentary rock.
- Found at the edges of continents.
- Tallest type of mountain.
- Examples: Himalayas (Asia), Rocky Mountains (Canada/USA)



B) Fault-Block Mountains

- Form when tectonic plates pull apart.
- Cracks or faults cause some blocks of rock to drop and others to rise.
- The mountains are made from the blocks that were pushed up.
- Example: Sierra Nevada (California and Nevada)

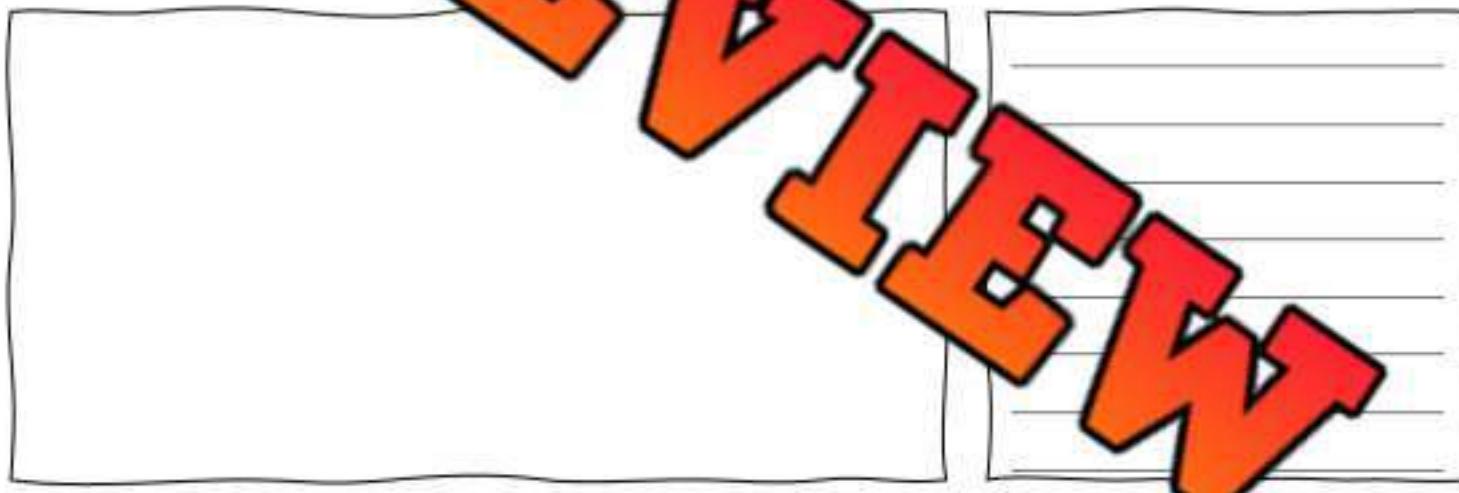
C) Volcanic Mountains

- Made when **magma** rises through the Earth's crust.
- Two kinds: dome mountains and volcanoes.
 - Dome mountains: Magma pushes up but doesn't break through. It cools and hardens into rock.
 - Volcanoes: Magma escapes and becomes **lava**. Lava builds up and forms cone-shaped mountains.
- Example: Mount St. Helens (Washington, USA)

Questions

Use information from the text to support your answer.

1) What are the characteristics of a mountain?

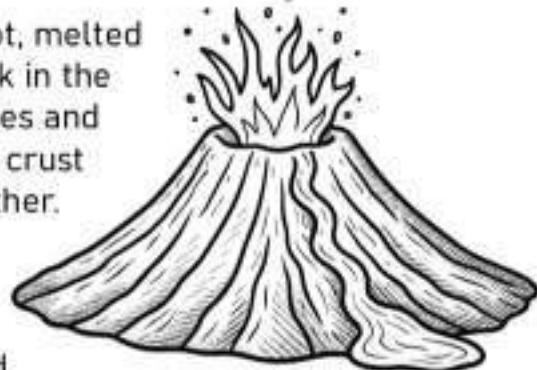


2) Explain the differences between fold mountains and fault-block mountains.

Visualization

What mental picture did you have in your head as you were reading? Describe your picture.

Yes or No

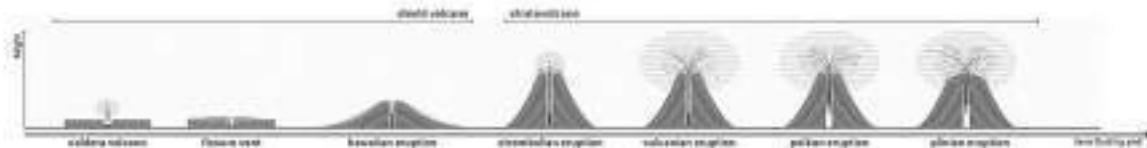

Circle whether the statement is true or not.

1) Do mountains need to be 300 metres tall to be called mountains?	Yes	No
2) Are the three types of mountains called fold, tectonic, and volcanic?	Yes	No
3) Is the summit the flat part at the bottom of a mountain?	Yes	No
4) Are fold mountains usually made of soft sedimentary rock?	Yes	No
5) Is Mount Everest getting shorter by 40 cm every 100 years?	Yes	No
6) Do mountain ranges have only one tall mountain peak?	Yes	No

Volcanoes

How Volcanoes Form

Volcanoes are special landforms made when **magma** (hot, melted rock) from deep inside the Earth rises up through a crack in the Earth's outer layer, called the **crust**. When magma escapes and reaches the surface, it is called **lava**. These cracks in the crust often happen where **tectonic plates** push against each other. One plate, usually an ocean plate, is pushed underneath another plate. As it sinks, it melts into magma. The pressure builds until the magma bursts out through the crack in the crust in an eruption. Most volcanoes are found along the edges of the tectonic plates.


The Ring of Fire

The **Pacific Ring of Fire** is the most active volcanic area in the world. It is a horseshoe-shaped zone with more than 250 active volcanoes. It stretches along the coasts of the Pacific Ocean, including places like Japan, Indonesia, and the Philippines. About 500 volcanoes are active today, but many more—about 15,000 small volcanoes—are under the ocean and not yet seen.

Three Types of Volcanoes

There are three main types of volcanoes, and each one forms a different way.

- 1) **Shield Volcanoes** – These are formed from thin, fast-moving lava flows far from the vent and creates wide volcanoes with gentle slopes. They are tall, but they can cover a huge area.
- 2) **Stratovolcanoes** – Also called composite volcanoes, these are very tall and cone-shaped. They can be nearly 2,500 metres high. They are built over thousands of years by many eruptions, which create layers of lava, ash, and cinder that harden into rock.
- 3) **Cinder Cone Volcanoes** – These are the smallest type, usually under 400 metres. Made from one short eruption of ash and rocks around a single vent.

Massive Volcanoes in Hawaii

Hawaii is home to the two biggest volcanoes on Earth. **Mauna Loa** is the largest volcano by volume and is a **shield volcano**. **Mauna Kea** is the tallest when measured from its base on the ocean floor—it is taller than Mount Everest when measured this way. Both formed on the ocean floor from lava building up over time.

True or False

Circle whether the statement is true or false.

1) Most volcanoes form at tectonic plate edges.	True	False
2) The Pacific Ring of Fire has over 250 volcanoes.	True	False
3) Volcanoes only occur on land.	True	False
4) Magma rises through cracks in Earth's crust during an eruption.	True	False
5) Mauna Kea is the world's tallest volcano.	True	False
6) The Ring _____ is located in the Atlantic Ocean.	True	False

Question 10: Find one sentence from the text to support your answer.

1) What is the difference between magma and lava?

2) What are the three types of volcanoes, and how is each one different from the others?

Summarize

Summarize the reading by writing the important information.

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

Draw a line from each word to its correct meaning.

Magma Flat volcano formed from runny lava with gentle slopes**Lava** Hot melted rock beneath the Earth's surface**Shield Volcano** A cone-shaped volcano built from many eruptions**Stratovolcano** Melted rock that flows on the surface after eruption

Name: _____

Mark

Draw a line from each word to its correct meaning.

Magma Flat volcano formed from runny lava with gentle slopes**Lava** Hot melted rock beneath the Earth's surface**Shield Volcano** A cone-shaped volcano built from many eruptions**Stratovolcano** Melted rock that flows on the surface after eruption

Name: _____

Mark

Draw a line from each word to its correct meaning.

Magma Flat volcano formed from runny lava with gentle slopes**Lava** Hot melted rock beneath the Earth's surface**Shield Volcano** A cone-shaped volcano built from many eruptions**Stratovolcano** Melted rock that flows on the surface after eruption

Name: _____

Mark

Draw a line from each word to its correct meaning.

Magma Flat volcano formed from runny lava with gentle slopes**Lava** Hot melted rock beneath the Earth's surface**Shield Volcano** A cone-shaped volcano built from many eruptions**Stratovolcano** Melted rock that flows on the surface after eruption

Blog Post: The Ring of Fire

Top 5 Things You Didn't Know About the Ring of Fire's Volcanoes

Date: August 7, 2025

Author: Jasmine K.

4-minute read

Have you ever heard of the Ring of Fire? No, it's not just a song—it's a real place on Earth, full of fire and danger! The Ring of Fire is a giant circle of volcanoes and earthquake zones around the Pacific Ocean. It has over 250 active volcanoes and is home to 75% of the world's volcanoes. Here are 5 wild facts you probably didn't know:

1) Japan has over 100 active volcanoes!

Japan sits on the edge of four tectonic plates. That's why it has so many earthquakes and volcanoes. Mount Fuji is the most famous one, and it's still active, even though it hasn't erupted in 100 years!

2) The Philippines' active volcano is very dangerous.

Mount Mayon in the Philippines erupts often. It's known for its perfect cone shape, but it's also deadly. It's erupted 52 times in the last 400 years.

3) The west coast of North America is full of dormant volcanoes.

From California to British Columbia, dormant volcanoes like Mount St. Helens and Mount Rainier sit quietly now, but Mount St. Helens erupted in 1980, Mount St. Helens had a huge eruption that destroyed forests and towns.

4) Tectonic plates make volcanoes erupt.

The Earth's crust is cracked into big pieces called tectonic plates. Where they push together (called convergent boundaries), magma rises and erupts as lava. This is how most Ring of Fire volcanoes are formed.

5) Many volcanoes are underwater!

Most of the Ring of Fire's volcanoes are actually underwater in the Pacific Ocean. These underwater volcanoes can still erupt and even cause tsunamis!

Comments:

Ethan P. – August 7, 2025

This is cool! I didn't know most volcanoes are under the ocean. That explains all the tsunamis near the Philippines and Japan. In 2004, an underwater earthquake caused a tsunami that killed over 200,000 people.

Like Reply 1d ago

Leila M. – August 8, 2025

Great blog, but I think the volcanoes on land are more dangerous to people than the ones underwater. Land volcanoes like Mount Pinatubo caused ash to fall hundreds of kilometres away when it erupted in 1991!

Like Reply 10m ago

Questions Answer the questions below using evidence from the text.

1) What is the Ring of Fire and where is it located?

2) Explain how tectonic plates cause volcanoes to erupt.

3) How would you prevent a volcano from erupting? Why?

Two Truths and a Lie

Check only the two truths in each row.

The Ring of Fire has over 250 active volcanoes around the Pacific.

The Ring of Fire wraps all the way around the Atlantic Ocean.

Volcanoes in the Ring of Fire form mostly at convergent boundaries.

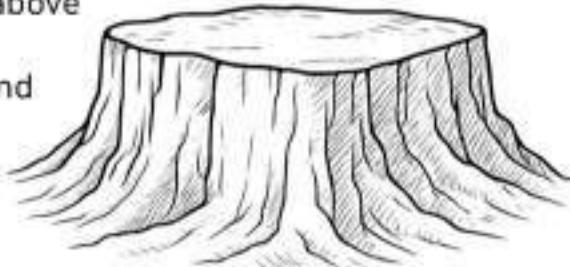
Volcanoes don't erupt under the ocean because there is water.

The Ring of Fire includes Canada and the United States.

Lava comes from deep underground, where magma pushes through cracks.

My Opinion

Do you think underwater volcanoes or land volcanoes are more dangerous?

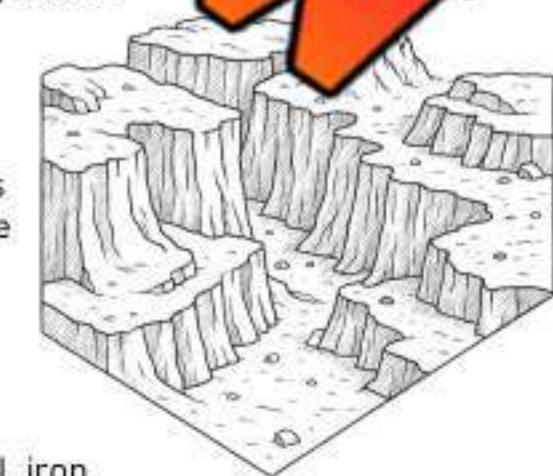


Plateaus

What Are Plateaus?

Plateaus are one of the four major landforms on Earth, along with mountains, plains, and hills. A plateau is a flat area of land that rises sharply above the surrounding land. It looks like a large, flat surface sitting high up, almost like a table. Plateaus can be found all over the world, and they cover more than one-third of all land on Earth. There are also landforms under water, including **oceans, rivers, and lakes**. But plateaus can form on land and under the sea.

Types of Plateaus


There are two main ways to group plateaus based on where they are found:

- **Continental Plateaus:** These are plateaus that are found on land. They exist on every continent. The **Amazon Plateau** in South America is the largest and highest plateau in the world. It is 2.5 million square kilometres in size and sits at a very high elevation.
- **Ocean Plateaus:** These are plateaus found under the sea. The largest underwater plateau is the **Australis** in the South Pacific Ocean. It is 1.5 million square kilometres, which is larger than the province of British Columbia!

How Plateaus Are Formed

Plateaus are also grouped by how they were made. As Earth's crust moves and changes, which forms different types of plateaus:

- 1) **Dissected Plateaus** – These are made when tectonic plates move and push land upward. Example: the **Deccan Plateau** in India.
- 2) **Volcanic Plateaus** – These form from lava that flows from many eruptions. Each time the lava cools and hardens, it creates a new layer. Over time, these layers build up into a raised, flat area. Example: the **North Island Volcanic Plateau** in New Zealand.

Types Based on Environment

Plateaus can also be grouped by what is around them:

- **Intermontane** – Located between mountain ranges
- **Piedmont** – Located beside a mountain on one side and a plain or body of water on the other
- **Continental** – Surrounded by land or water with steep sides

Natural Resources on Plateaus

Many **minerals** can be found on plateaus, like gold, coal, iron, copper, and diamonds. These minerals are easier to mine from plateaus than from mountains because plateaus have flat land that is easier to reach.

True or False

Circle whether the statement is true or false.

1) Mountains, valleys, hills and plateaus are major landforms.	True	False
2) Plateaus are rich in minerals.	True	False
3) Plateaus are only found on continents.	True	False
4) Plateaus have at least one side that has a steep drop to land or water.	True	False
5) The Tibetan Plateau is the world's largest.	True	False
6) Plateaus are found on land and under the sea.	True	False

Question: _____

1) What is a plateau? How are oceanic and continental plateaus different?

2) What are two ways that plateaus are classified? Give an example for each?

Matching

Match the plateau with the correct description from the list below.

Deccan Plateau <input type="radio"/>	<input type="radio"/> A plateau found underwater
Tibetan Plateau <input type="radio"/>	<input type="radio"/> The highest and largest plateau in the world, found in Asia
Volcanic Plateau <input type="radio"/>	<input type="radio"/> A dissected plateau in India formed by tectonic movement
Ocean Plateau <input type="radio"/>	<input type="radio"/> A plateau formed by lava from many volcanic eruptions

Exit Cards

Cut Out Cut out the exit cards below and have students complete them at the end of class.

Name: _____
Circle Yes or No for each question.

Mark

1) Can plateaus be found both above and below sea level?	Yes <input type="checkbox"/>
2) Are minerals easier to mine on plateaus than on mountains?	Yes <input type="checkbox"/>
3) Is the Tibetan Plateau the lowest plateau on Earth?	Yes <input type="checkbox"/>
4) Can ocean plateaus be larger than Canadian provinces?	No <input type="checkbox"/>
5) Do tectonic plates help form dissected plateaus?	Yes <input type="checkbox"/>

Name: _____
Circle Yes or No for each question.

Mark

1) Can plateaus be found both above and below sea level?	Yes <input type="checkbox"/>
2) Are minerals easier to mine on plateaus than on mountains?	Yes <input type="checkbox"/>
3) Is the Tibetan Plateau the lowest plateau on Earth?	Yes <input type="checkbox"/>
4) Can ocean plateaus be larger than Canadian provinces?	No <input type="checkbox"/>
5) Do tectonic plates help form dissected plateaus?	Yes <input type="checkbox"/>

Name: _____
Circle Yes or No for each question.

Mark

1) Can plateaus be found both above and below sea level?	Yes <input type="checkbox"/>
2) Are minerals easier to mine on plateaus than on mountains?	Yes <input type="checkbox"/>
3) Is the Tibetan Plateau the lowest plateau on Earth?	Yes <input type="checkbox"/>
4) Can ocean plateaus be larger than Canadian provinces?	No <input type="checkbox"/>
5) Do tectonic plates help form dissected plateaus?	Yes <input type="checkbox"/>

Name: _____
Circle Yes or No for each question.

Mark

1) Can plateaus be found both above and below sea level?	Yes <input type="checkbox"/>
2) Are minerals easier to mine on plateaus than on mountains?	Yes <input type="checkbox"/>
3) Is the Tibetan Plateau the lowest plateau on Earth?	Yes <input type="checkbox"/>
4) Can ocean plateaus be larger than Canadian provinces?	No <input type="checkbox"/>
5) Do tectonic plates help form dissected plateaus?	Yes <input type="checkbox"/>

Fact Or Fiction: Extreme Landforms

Objective

What are we learning about?

To help students learn about extreme landforms by hearing surprising true or false statements about mountains, volcanoes, plateaus, valleys, and hills. After each guess, students will discuss the real natural processes that shaped each landform.

Materials What materials do you need for the activity?

- Fact or Fiction statements
- A 'Fact' sign and a 'Fiction' sign to place on either side of the room
- Designated areas in the classroom to move to, including the 'Fact' and 'Fiction' signs, allowing space for students to move to either side

Instructions How will you complete the activity?

1. Your teacher will read statements. Pay close attention as each statement is read.
2. Consider carefully whether you think the statement is true or false.
3. If you decide the statement is true, walk to the 'Fact' side of the room.
4. If your guess is that it's not true, move to the 'Fiction' side of the room.
5. Stay on your chosen side and listen attentively for the correct answer to be revealed.
6. When the right answer is announced, return to your seat, ready for the next round.
7. Have fun getting up and moving!

Fact or Fiction

Read the statements to the class.

#	Statement	
1	Mount Everest grows about 40 centimetres taller every 100 years.	Fact
2	All mountains are formed by volcanic eruptions.	Fiction
3	The Andes Mountains stretch across seven countries in South America.	Fact
4	Plateaus are always found between two rivers.	Fiction
5	The Tibetan Plateau is the largest and highest plateau in the world.	Fact
6	Dome mountains form when magma pushes up but doesn't break through.	Fact
7	River valleys form when rivers slowly wear away rock and soil.	Fact
8	All valleys have the same U-shape.	Fiction
9	Hills are lower than mountains but have the same shape as the land around them.	Fact
10	All hills are made by people piling dirt and rocks together.	Fiction
11	Volcanic mountains form when lava builds up and hardens.	Fact
12	Shield volcanoes are the smallest type of volcano.	Fiction
13	The Pacific Ring of Fire has over 250 active volcanoes.	Fact
14	All volcanoes are found on land, never underwater.	Fiction
15	Fault-block mountains form when crust cracks and blocks of rock rise.	Fact
16	Plateaus never form under the ocean's surface.	Fiction
17	Cinder cone volcanoes are usually less than 400 metres tall.	Fact
18	Fold mountains form when plates pull apart from each other.	Fiction
19	The Rocky Mountains are an example of fold mountains.	Fact
20	Hills can form when glaciers drop piles of rock and soil.	Fact

PREVIEW

Quiz
Check-In

This quiz will assess students' understanding of the concepts covered in the Fact or Fiction activity. Cut along the lines and give each section to a student.

Name: _____

Mark

Is the statement true (T) or false (F)?

1) The Andes Mountains stretch across seven countries in Africa.	T	F
2) The Rocky Mountains are an example of fold mountains.	T	F
3) Fault-block mountains form when crust cracks and blocks of rock rise.	T	F
4) Fold mountains form when magma pushes up but doesn't break through.	T	F
5) River valleys form when rivers slowly wear away rock and soil.	T	F
6) Plateaus never form under the ocean's surface.	T	F

Name: _____

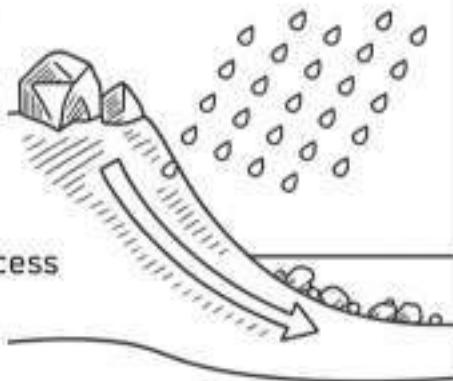
Mark

Is the statement true (T) or false (F)?

1) The Andes Mountains stretch across seven countries in Africa.	T	F
2) The Rocky Mountains are an example of fold mountains.	T	F
3) Fault-block mountains form when crust cracks and blocks of rock rise.	T	F
4) Fold mountains form when magma pushes up but doesn't break through.	T	F
5) River valleys form when rivers slowly wear away rock and soil.	T	F
6) Plateaus never form under the ocean's surface.	T	F

Name: _____

Mark


Is the statement true (T) or false (F)?

1) The Andes Mountains stretch across seven countries in Africa.	T	F
2) The Rocky Mountains are an example of fold mountains.	T	F
3) Fault-block mountains form when crust cracks and blocks of rock rise.	T	F
4) Fold mountains form when magma pushes up but doesn't break through.	T	F
5) River valleys form when rivers slowly wear away rock and soil.	T	F
6) Plateaus never form under the ocean's surface.	T	F

Erosion

Understanding Erosion

Erosion is the wearing away of the land by natural forces such as wind, water, ice, and gravity. It also involves moving these particles or larger pieces of the Earth to a new location. Over millions of years, erosion has shaped many of the Earth's most impressive **landforms**, including mountains, valleys, hills, plateaus, and coastlines. While erosion can take thousands of years to noticeably reshape a landscape, it is a continuous process that never stops. Some landforms, like the Grand Canyon in the United States, have been carved almost entirely by erosion from the Colorado River.

There are several types of erosion:

- **Water erosion** – caused by rivers, waves, and flooding.
- **Wind erosion** – common in arid, dry, and open areas with little vegetation.
- **Ice erosion** – caused by moving ice sheets moving and carrying away rock.
- **Mass movement** – landslides, avalanches, and rockfalls caused by gravity.

Water Erosion – The Most Powerful Force

Water is the leading cause of erosion worldwide. It can break away solid rock, carry large amounts of soil, and change the shape of coastlines, rivers, and lakes. The speed and amount of erosion depend on the strength of the water, the amount of water, the type of land, and the type of rock or soil.

Major forms of water erosion include:

- 1) **Rainfall (Splash Erosion)** – Raindrops hitting the ground break away small particles of soil and rock. Water gathers into small streams that carry these particles downstream.
- 2) **Rivers** – River water breaks up rock and soil at its bed and banks, moving sediment downstream. Many property owners along rivers lose land each year as banks are worn away.
- 3) **Waves** – Constant wave action can polish stones smooth and grind pebbles into sand through abrasion. This can expand river mouths, reshape beaches, and deepen bays.
- 4) **Flooding** – Floodwaters move quickly and can cause severe erosion in hours, destroying roads, farmland, and protective levees.

The Role of Climate in Erosion

Climate plays a big role in the rate of erosion. Areas with frequent heavy rain, storms, or strong winds experience erosion more quickly. In Canada, coastal regions like Nova Scotia see strong wave erosion, while the Prairie provinces can experience intense wind erosion during dry seasons. In the North, melting glaciers contribute to erosion by releasing massive amounts of water and carrying rocks over long distances.

True or False

Circle whether the statement is true or false.

1) Erosion has helped create the awesome landforms around the world.	True	False
2) The Grand Canyon was shaped mostly by wind erosion over time.	True	False
3) Climate has no effect on erosion.	True	False
4) Sediment moved by rivers is usually left behind at the source.	True	False
5) Erosion causes particles of earth to be moved from one place to another.	True	False
6) Wind erosion is most common in wet areas with many trees.	True	False

Question: _____ Use one sentence from the text to support your answer.

1) What is erosion? _____ There are four main types?

2) Which type of erosion do you think is the strongest? Why?

Fill in the Blanks

Fill in the blanks with the missing word.

1) Ice erosion is caused by _____ scraping and carrying away rock.

2) A protective wall built along rivers to prevent flooding is a _____.

3) The grinding action of waves that wears away rocks is called _____.

4) The small pieces of rock or soil moved by rivers are called _____.

5) Erosion caused by raindrops hitting the ground is called _____ erosion.

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

List the 4 main types of erosion explained in the text.

1	
2	
3	
4	

Name: _____

Mark

List the 4 main types of erosion explained in the text.

1	
2	
3	
4	

Name: _____

Mark

List the 4 main types of erosion explained in the text.

1	
2	
3	
4	

Name: _____

Mark

List the 4 main types of erosion explained in the text.

1	
2	
3	
4	

Name: _____

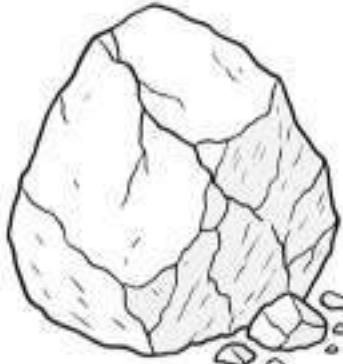
Mark

List the 4 main types of erosion explained in the text.

1	
2	
3	
4	

Name: _____

Mark


List the 4 main types of erosion explained in the text.

1	
2	
3	
4	

Weathering

Weathering – Breaking Down Rocks

Weathering is the process where rocks are broken into smaller pieces while staying in the same location. It changes the size and shape of the rock and can also change its chemical makeup. This process is different from erosion, where the broken material is carried away by wind, water, ice, or gravity. Weathering plays a key role in shaping Canada's landscapes, from the Rocky Mountains to the shores of the Great Lakes.

Physical Weathering – Seven Main Types

Physical weathering occurs when rocks are broken apart without changing their composition. It is caused by temperature changes, water, wind, plants, animals, and gravity. There are seven main types:

- 1) **Freeze-thaw** – Water enters cracks in rocks. When temperatures drop below 0°C, the water freezes and expands by about 9%. This expansion pushes the cracks wider. Over many winters, this causes the rock to break. Thawing can break large rocks apart.
- 2) **Crystal formation** – Salt or ice seeps into cracks in rocks. When the water evaporates, salt crystals form. As the crystals grow, they push against the rock, forcing it to split.
- 3) **Unloading and exfoliation** – Rocks are under pressure from layers above. If glaciers melt or erosion removes these layers, the pressure decreases. The rock expands and cracks, sometimes peeling layers like an onion.
- 4) **Thermal expansion and contraction** – Rocks heat up and cool down during hot summer days or in wildfires. At night or in cold seasons, new cracks form. Repeated cycles cause cracks to form.
- 5) **Abrasion** – Wind carrying sand or small particles blows across a surface. Over many years, this wears the rock smooth or breaks it into smaller pieces.
- 6) **Gravitational impact** – Rocks fall from cliffs or steep slopes because of gravity. When they hit other rocks, both can break apart.
- 7) **Biological activity** – Plant roots grow into cracks in rocks, pushing them apart. Burrowing animals loosen rock material as they dig.

Chemical Weathering – Changing Rock Composition

Chemical weathering happens when water and air cause chemical changes in rocks. Minerals in the rock can dissolve, or new substances can form. For example, rocks with iron can rust when exposed to oxygen and water. Acids form naturally when water mixes with carbon dioxide or other gases in the air, and these acids slowly dissolve certain rocks, such as limestone. Warm, humid climates speed up chemical weathering, while cold, dry regions experience more physical weathering.

Questions

Use information from the text to support your answer.

1) What is the difference between erosion and weathering?

2) Describe how winds can naturally form and break down rocks.

Fill in the blanks

Fill in the blanks with the following terms of physical weathering.

	Rocks crack from repeated heating in summer and cooling in winter.
	Rocks fall from cliffs and break apart.
	Pressure is removed, and rock cracks and splits into smaller pieces.
	Plant roots or burrowing animals break rocks apart.
	Wind carrying sand slowly wears away rock surfaces.
	Water freezes in cracks and expands by 9%, breaking rock.
	Saltwater dries, leaving crystals that grow and split rock.

Questioning

Write at least two questions you have after reading the text.

1)	_____

2)	_____

Deltas

How Rivers Form Deltas

Rivers are moving streams of water that travel from higher land to lower areas, eventually emptying into lakes or oceans. As they flow, they pick up and carry small pieces of rock, **sand**, and soil called **sediment**. This movement of material is part of the process known as **erosion**, which has three stages:

- 1) **Detachment** – Material breaks away from its original place. For example, soil can wash off riverbanks during heavy rain or be blown into the river by wind.
- 2) **Transport** – The river current carries the sediment downstream.
- 3) **Deposition** – The sediment is dropped in a new location when the water slows down.

When the river slows down, where it meets a lake or ocean, the water slows because it is pushing against still water. With less force, the river can no longer carry sediment, so the sediment settles down. This builds up into a landform called a **delta**.

Features and Formation of Deltas

A **delta** is made of nutrient-rich sediment deposited over thousands of years. The deposition can create small islands splitting the main river into smaller channels called **distributaries**. This process also causes the mouth of the river to widen.

Deltas often change shape because they are **prone to flooding**, which moves and redistributes sediment. Not all rivers form deltas. Rivers with slower flow, like the Mississippi River in the United States or the Nile River in Egypt, create large deltas. In contrast, deep and fast rivers, such as the St. Lawrence River in Canada, carry less sediment and do not form deltas.

Importance of Deltas

Because delta soil is full of nutrients, it is highly fertile, supporting wetlands and a variety of wildlife. These wetlands provide shelter and food for birds, fish, amphibians, and many other animals. Deltas are also important for people, offering farmland and fishing areas.

Key Facts about Deltas:

- Form at the mouth of rivers where they meet still water.
- Built over thousands of years through deposition.
- Often split into smaller distributary channels.
- Prone to flooding and constant shape change.
- Found in slow-moving, sediment-rich rivers.

Multiple Choice Circle the correct answer.

1) The final stage of erosion is...	Detachment	Deposition
2) A landform at a river's mouth is called a...	Plateau	Delta
3) Sediment in a delta is rich in...	Nutrients	Salt
4) A river splits into smaller channels called...	Distributaries	Tributaries
5) The Nile River delta is found in...	Egypt	Canada

Questions _____
formation from the text to support your answer.1) What is a delta? _____ formed?2) Explain why nutrient-rich soil in a delta is important.

True or False

Circle whether the statement is true or false.

1) A delta is a lake or ocean that leads to a river.	True	False
2) A delta happens when sediments travel by a river to a lake or ocean.	True	False
3) Sediments are huge pieces of rock.	True	False
4) A delta is a landform that is a wetland outside of a lake or ocean.	True	False
5) Rivers are streams, that flow into lakes and oceans.	True	False
6) Deltas are built quickly, usually forming in less than one hundred years.	True	False

Exit Cards

Cut Out Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

Fill in the blanks using the word bank.

- 1) A delta forms at the _____ of a river.
- 2) The process of dropping sediment in a new place is called _____.
- 3) Small rivers that branch off from a main river are called _____.
- 4) Deltas are important for farming because they have _____ soil.

Name: _____

Mark

Fill in the blanks using the word bank.

- 1) A delta forms at the _____ of a river.
- 2) The process of dropping sediment in a new place is called _____.
- 3) Small rivers that branch off from a main river are called _____.
- 4) Deltas are important for farming because they have _____ soil.

Name: _____

Mark

Fill in the blanks using the word bank.

- 1) A delta forms at the _____ of a river.
- 2) The process of dropping sediment in a new place is called _____.
- 3) Small rivers that branch off from a main river are called _____.
- 4) Deltas are important for farming because they have _____ soil.

Name: _____

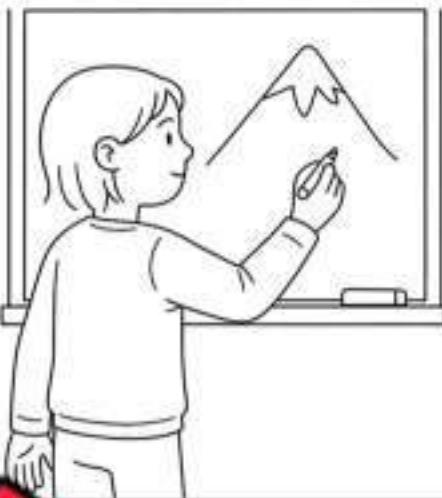
Mark

Fill in the blanks using the word bank.

- 1) A delta forms at the _____ of a river.
- 2) The process of dropping sediment in a new place is called _____.
- 3) Small rivers that branch off from a main river are called _____.
- 4) Deltas are important for farming because they have _____ soil.

Pictionary: Name that Landform

Objective


What are we learning about?

Students will learn about different landforms, including mountains, valleys, plateaus, plains, deltas, glaciers, and more. They will draw and guess these landforms while learning about their physical features and the natural processes that shape them.

Materials

What will you need for the activity?

- Markers or pens
- Landform cards (examples: mountains, valleys, plateaus, plains, deltas, etc.)

Instructions

How will you complete the activity?

1. Split the class into two teams, maybe by rows or groups of desks.
2. Have one student from Team A come up and pick a card. Make sure to keep the card a secret from everyone else.
3. The student then draws what's on the card on a whiteboard or large piece of paper.
4. Start a timer for 2 minutes. During this time, Team A tries to guess what is being drawn.
5. If Team A guesses the drawing correctly before the timer goes off, they earn a point.
6. Next, it's Team B's turn. A student from Team B picks a card and draws, while their team guesses.
7. Alternate turns between the two teams, letting different students draw each time.
8. Continue the game until all the cards have been used. Keep track of points for each team.
9. At the end, count up the points. The team with the most points is the winner of Name that Landform Pictionary!

PREVIEW

Pictionary Cards

Cut out the cards below.

Mountain

Valley

Plateau

Plain

Delta

Glacier

Desert

Cliff

Lake

Land

Swamp

Sand dune

Waterfall

Oceans

Beach

Forest

Coast

Marsh

Stream

Cave

Wetland

Tundra

PREVIEW

Human-Caused Changes To Habitats

Human Impact on Habitats

As the human population continues to grow, more land is cleared for homes, businesses, farming, and roads. This process destroys or changes **habitats**—the natural environments that plants and animals need to survive. When a habitat is damaged, species lose their sources of food, water, and shelter. In addition to destroying habitats, humans often introduce **invasive species**—plants or animals from other parts of the world—into these areas. Invasive species compete with native species for food and space, sometimes spreading disease or preying on native animals. Both habitat destruction and invasive species can lead to **extinction** and the loss of **biodiversity**.

Research shows humans have caused 322 animal species to go extinct in the past 500 years. Extinction means no individuals remain anywhere on Earth. Examples include sabre-toothed cats, woolly mammoths, dodo birds, and Tasmanian tigers. In Canada, the Vancouver Island wolverine, last seen in 1992, is believed

Endangered Species in Canada

An **endangered species** is a plant or animal that is in serious danger of extinction. The Canadian government has officially listed 55 endangered species. Examples include sea otters, beluga whales, and wolverines. The main causes are habitat destruction, overhunting, pollution, and climate change. Many endangered animals have small populations, which makes them more vulnerable to disease, predators, and environmental changes.

Examples of endangered animals in Canada:

- **Sea otter** – harmed by oil spills and hunting for fur
- **Beluga whale** – threatened by pollution and noise in Arctic waters
- **Wolverine** – affected by shrinking wilderness areas and hunting

Human Actions Threatening Wetlands

Wetlands—such as marshes, swamps, bogs, and fens—are highly productive ecosystems. They filter water, store carbon, prevent floods, and provide homes for hundreds of species. However, human activity is changing wetlands in damaging ways.

- 1) **Pollution:** Chemicals from homes, farms, and factories—such as pesticides, fertilizers, and waste—enter wetlands through surface or groundwater. These pollutants make water unsafe for plants and animals, causing death or reduced growth.
- 2) **Water Flow Changes:** Humans sometimes reroute water for farming, drinking water supply, or flood control. This disrupts fish populations, which rely on constant water flow for migration and for laying eggs.
- 3) **Habitat Loss:** Wetlands are often drained or filled to create land for building or agriculture, removing vital habitat for birds, amphibians, and fish.

True or False

Circle whether the statement is true or false.

1) Humans caused animals to become extinct in the distant past but now species are not at risk because we know better.	T	F
2) Water pollution does not affect plants.	T	F
3) Over hunting is a problem that threatens certain species.	T	F
4) People need to make a living so we should not be concerned about endangering species.	T	F
5) Farmers often certain wildlife species because of their farming practices.	T	F
6) The Van wolverine was last officially seen in 1992.	T	F

Question: Use information from the text to support your answer.

1) Animals are endangered and extinct because of us. Do you think we need to stop developing land for business? Explain?

2) How are wetlands being affected by human actions?

Questioning

Write at least two questions you have after reading the text.

1)

1)	_____
----	-------

2)

2)	_____
----	-------

Invasive Species

The Threat of Invasive Species

Habitat loss is the greatest danger to native plants and animals, but **invasive species** are the second biggest threat. These are plants, animals, or organisms that arrive in an area where they do not naturally live. They often come through human activity, sometimes by accident. For example, **zebra mussels** invaded the St. Lawrence River and the Great Lakes in the late 1980s. Native to the Black Sea region in Europe and Asia, they were brought to Canada in the ballast water of ocean-going ships.

Zebra Mussels – Fast Spread and Major Impact

Zebra mussels spread extremely quickly, with one female laying up to 1 million eggs in a single summer. They eat water for **plankton**, which is food for many native fish, reducing food supplies for these species. They also attach to water intake pipes at treatment plants, causing costly

In the St. Lawrence River, zebra mussels have made the water much clearer. This has turned the area into a popular spot for recreational diving because visibility has improved. However, clearer water also allows invasive plants to grow faster and taller, changing fish habitats. Zebra mussels also eat native animals like clams and crayfish and can cut swimming areas because of their sharp shells. Their waste can make drinking water smell and taste unpleasant.

Key Facts about Zebra Mussels:

- First discovered in Lake St. Clair in 1988.
- Can survive for days out of water in damp conditions.
- Each mussel can filter up to 1 litre of water per day.
- Have no natural predators in Canadian waters.

Purple Loosestrife – A Wetland Invader

Purple loosestrife, native to Europe and Asia, arrived in North America in ship ballast soil and as an ornamental garden plant. It spreads in wetlands, forming dense clusters that block other plants from growing. It is not eaten by local wildlife, and its tall, thick growth prevents animals from using it for shelter. When it spreads into farm fields, it lowers the value of livestock feed crops because animals will not eat it.

Controlling Purple Loosestrife with Beetles

Scientists found a beetle in Europe and Asia that feeds only on purple loosestrife. After confirming that it would not harm other plants or the environment, these beetles were released in North America. The beetles eat the plant's leaves, often killing it before it flowers and produces seeds. This method is more environmentally friendly than chemical herbicides or pulling the plants, which can disturb wetlands.

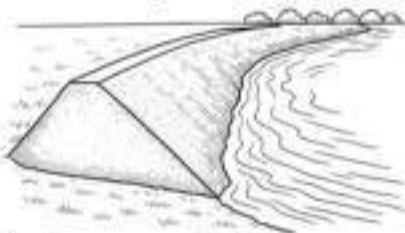
Sorting Decide if each fact describes Zebra Mussels or Purple Loosestrife.

1) First discovered in Lake St. Clair in 1988.	
2) Spreads in wetlands and blocks other plants from growing.	
3) Lowers the value of livestock feed crops.	
4) Can filter up to 1 litre of water per day.	
5) Controlled by beetles that eat only its leaves.	
6) Sharp shells can cut swimmers' feet.	

Question: Circle the facts from the text to support your answer.

1) Why is habitat loss a problem?

2) What are the main benefits of using beetles instead of herbicides and pulling?

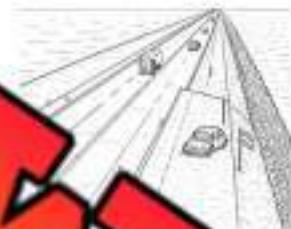

True or False Circle whether the statement is true or false.

1) Invasive species are always animals.	True	False
2) Zebra mussels increase water clarity in the St. Lawrence River.	True	False
3) Invasive species are very difficult to control.	True	False
4) Invasive species compete with plants and animals for food and space.	True	False
5) Zebra mussels first entered Canada through soil in ship cargo.	True	False
6) One zebra mussel can filter more water than a goldfish.	True	False

Human Impact On Water Landforms

Human Activities that Affect Water Landforms

Humans need water to survive. People use water for drinking, washing, waste disposal, watering crops, generating power, fishing, transportation and recreation. People like to live near water, so they have a convenient source of water for their needs. Because landforms are constantly changing sometimes people live too close to water and they have to build something to make the water flow where they want it to go. For this reason, people build dykes, dams and levees.


What is a Levee?

A **levee** is a man-made embankment or a wall constructed to keep land that is normally dry from flooding when there are heavy rains, melting snow or storms. A levee is a wall that could cause water levels to rise temporarily. Levees are also used to control the flow of rivers. They are usually constructed parallel to the shores of a body of water, such as a river or lake. A levee built along the edge of a river keeps the river from overflowing its banks and flooding areas where people live.

Levees prevent erosion and widen a river. The levee causes the river to stay within its banks and makes the water deeper and faster flowing. Levees prevent rivers from carrying sediment, so deltas do not form and there are no wetlands.

What is a Dyke?

A **dyke** is a wall or ridge of raised earth that is constructed to keep lying land from being flooded. The difference between a dyke and a levee is that a levee protects land that is normally dry from flooding. A dyke keeps land dry that would be wet if not for the dyke. Dykes and levees have water on one side. When dykes are built it reduces the land.

What is a Dam?

A **dam** is a structure or barrier across a stream or river that is built to create a reservoir of water used to create access to a regular supply of water, for flood control or to generate hydroelectric power. Dams can be small. A farmer may make a dam across a small stream just by dumping a few loads of earth into the stream, to create a pool which can be used by farm animals for drinking water. Dams can also be enormous concrete structures such as the Hoover Dam which is built across the Colorado River in United States.

The Hoover Dam was built to control flooding, provide irrigation water and provide hydroelectric power. The Hoover Dam is a 221 meters tall concrete structure that created Lake Meade as its water reservoir. A dam has water on both sides. When huge dams are built large areas of land are flooded causing people and animals to have to relocate.

Matching

Match each structure to its correct description.

Levee A structure or barrier built across a stream or river to store water, control floods, or make hydroelectric power.Dyke A wall or ridge of raised earth that keeps low land dry that would be wet without it, usually with water on one side.Dam An embankment or wall built parallel to a river or lake to protect normally dry land from flooding and to control river flow.

Questions

Use the following questions to answer information from the text to support your answer.

1) What are the positive and negative impacts of humans changing landforms when they build levees, dams and dykes?

2) How has the ability to build levees, dams and dykes benefited humans?

Mini-Story

Write a mini-story about a city saved by a levee.

PREVIEW

Exit Cards

Cut Out Cut out the exit cards below and have students complete them at the end of class.

Name: _____
Is the statement true (T) or
false (F)?

Mark

1) A levee keeps water out of
areas that are usually dry.

T

F

2) Dykes are made of concrete
and built across rivers.

T

F

3) Dykes keep land dry that
would otherwise be underwater.

T

4) The Hoover Dam is built in
British Columbia, Canada.

F

5) Levees make river water
deeper and move it faster.

T

F

Name: _____
Is the statement true (T) or
false (F)?

Mark

1) A levee keeps water out of
areas that are usually dry.

T

F

2) Dykes are made of concrete
and built across rivers.

T

F

3) Dykes keep land dry that
would otherwise be underwater.

T

F

4) The Hoover Dam is built in
British Columbia, Canada.

T

F

5) Levees make river water
deeper and move it faster.

T

F

Name: _____
Is the statement true (T) or
false (F)?

Mark

1) A levee keeps water out of
areas that are usually dry.

T

F

2) Dykes are made of concrete
and built across rivers.

T

F

3) Dykes keep land dry that
would otherwise be underwater.

T

F

4) The Hoover Dam is built in
British Columbia, Canada.

T

F

5) Levees make river water
deeper and move it faster.

T

F

Name: _____
Is the statement true (T) or
false (F)?

Mark

1) A levee keeps water out of
areas that are usually dry.

T

F

2) Dykes are made of concrete
and built across rivers.

T

F

3) Dykes keep land dry that
would otherwise be underwater.

T

F

4) The Hoover Dam is built in
British Columbia, Canada.

T

F

5) Levees make river water
deeper and move it faster.

T

F

Social Media Post – Hydroelectric Dams

JoshPonderer

Should we stop building large hydroelectric dams that flood huge areas of land and destroy animal habitats? These dams provide clean energy, but they also wipe out forests, wetlands, and entire ecosystems.

11:30 AM – 21/03/2025 – 1,529 SHARES 5,921 LIKES

 HydroFan55: Large dams give us renewable hydroelectric power. Canada gets over 60% of its electricity from water. These dams also reduce air pollution by replacing coal-burning power plants across many provinces.

 EcoVoice_Kid: Dams can bring energy, but they flood massive forests and wetlands. This destroys homes and wipes out habitats for moose, wolves, frogs, birds, and even people that have nowhere to go back.

 ThinkItThrough7: Some dams flood thousands of square kilometres of land. If we plan better and build smaller dams, we can still get energy but save more forests, animals, and freshwater ecosystems.

 EcoVoice_Kid: Wetlands are natural water filters and protectors. When large dams drown these areas, we lose clean water, which habitats and breeding grounds for ducks, turtles, insects, and amphibians. It's not just about power.

 HydroFan55: Dams also store water for farms and during dry seasons or emergencies, these reservoirs help communities survive more than make power—they provide safety during droughts and flooding.

 ThinkItThrough7: We could invest more in solar and wind farms. They use less space and don't destroy rivers or flood forests. Clean energy should be the future, not dams that destroy entire ecosystems to keep lights on.

 EcoVoice_Kid: Once forests and wetlands are flooded, they don't return. Species can go extinct. Some dams even force people to move from their homes, including Indigenous communities living near the rivers and forests.

 HydroFan55: Wind and solar aren't always reliable. Hydroelectric dams work year-round, even in winter. They're one of the only renewable energy sources that can provide stable power during all seasons and weather conditions.

 EcoVoice_Kid: There are more than 90,000 large dams worldwide. That's millions of hectares of land underwater. Most of that land was once animal habitat, forest, or farmland. We should not ignore that damage.

 ThinkItThrough7: Instead of building more giant dams, we should study each case. If a dam floods too much or destroys wildlife, it's not worth it. Energy plans must include nature in the decision.

Questions Answer the questions below using evidence from the text.

1) Explain why some people believe dams are necessary for energy.

2) Explain how building a dam could change an ecosystem forever.

3) Explain why Indigenous communities may be affected by dams.

True or False

Is the statement true or false?

1) Canada gets most of its electricity from fossil fuels.	True	False
2) Hydro dams are the only clean power that works in summer.	True	False
3) Flooded forests can grow back after the dam is built.	True	False
4) Large dams help protect some cities during drought seasons.	True	False
5) Over 90,000 big dams exist around the world today.	True	False
6) Hydro power is the only clean energy that works in Canada.	True	False

Opinion

Write a comment that you would add to this conversation.

Username: _____

Date: _____

Newspaper Article: Hurricane Katrina

Hurricane Katrina Brings Historic Flooding to New Orleans

Published: August 29, 2005

Hurricane Katrina struck the Gulf Coast this morning with devastating force, becoming one of the most powerful storms in U.S. history. With speeds reaching 280 kilometres per hour (175 mph) when it was at Category 5 strength, as it made landfall, the storm caused massive flooding, killing at least 1,833 people and causing an estimated \$108 billion in damage.

New Orleans, situated in the Mississippi River Delta, was hit especially hard. About 80% of the city is now under water, with flood levels reaching up to 6 metres (20 feet) in some neighbourhoods. The city's levees, built to protect against rising river water, failed when the storm surge pushed in from the Gulf.

Experts have warned for years that human changes to the delta made New Orleans more vulnerable. Dr. Elaine Roberts, a coastal scientist, explained,

“Wetlands and barrier islands are a natural defence. Every mile of wetland can absorb 7 to 20 centimetres of floodwater. But decades of levee building have blocked sediment from reaching the delta, causing wetlands to disappear at a rate of 60 square kilometres a year.”

New Orleans was already built on low ground, but pumping water and oil from the earth caused the land to sink even further—a process called subsidence. Most of the city now sits about 1.8 metres (6 feet) below sea level.

Local resident James Harris said: “I was in the water: I climbed onto the roof and waited all night for rescue.”

“I was in the water: I climbed onto the roof and waited all night for rescue.”

Before the city expanded, marshes acted like a sponge to protect against flooding. Scientists estimate that if the wetlands near the Mississippi's mouth had been left to grow naturally, they could have reduced the storm surge from over 20 metres (25 to 66 feet) to 7.6 meters. Katrina's surge reached deadly levels, overwhelming both natural and man-made defences.

True or False

Circle whether the statement is true or false.

1) Wetlands and marshes cause flooding during storms.	True	False
2) Hurricane Katrina was a category 5 hurricane.	True	False
3) Levees and dams prevent wetlands from forming because they hold the sediment that would normally deposit in the river delta.	True	False
4) Subsidence is when the earth sinks because oil or water is removed from the earth.	True	False
5) Levees prevent damage from happening during hurricanes.	True	False

Question: _____

1) What changes did humans make to landforms that caused the damage from Hurricane Katrina to be worse? What would have happened if humans hadn't made these changes?

2) What are the benefits of wetlands?

Reaction: How do you feel about what happened in New Orleans during Hurricane Katrina?

Human Footprint Case Study

Objective**What are we learning about?**

Students will explore a real-world example of how human activity has changed the environment. They will investigate what humans are doing, the environmental problems caused, possible solutions, and interesting facts. This will help them understand the two-way relationship between humans and the environment and encourage them to think about ways to help.

Materials

You will need the following materials for the activity?

- Example case study (provided)
- Research page with guiding questions (provided)
- Planning page (provided)
- List of optional topic ideas (provided)
- Report writing page (provided)

Instructions**How will you complete the activity?**

PREVIEW

- 1) Read the example case study to understand how human activity is changing the environment.
- 2) Choose one topic from the provided list or think of your own.
- 3) Use the research page with guiding questions to collect key facts and examples.
- 4) Record notes about what humans are doing and the effects on the environment.
- 5) Find information on possible solutions or actions that could reduce harm.
- 6) Add at least one interesting fact about your topic to make it unique.
- 7) Use the planning page to organize your information before writing.
- 8) Write your final report on the provided report page and include drawings, maps, or images if possible.

Criteria

Use the criteria below to complete the activity.

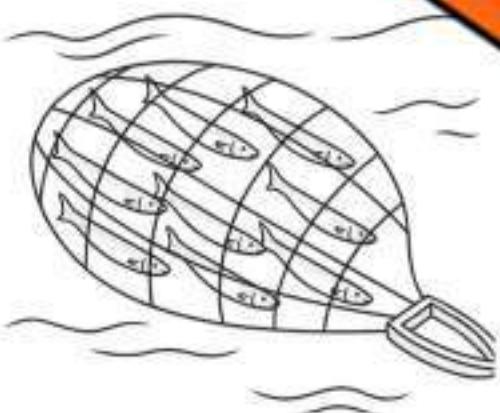
Criteria	Description
Topic Choice	The student selected a relevant human footprint case study topic from the list or created their own.
Research Quality	The student used the guiding questions to collect accurate and detailed information about their topic.
Environmental Impact	The student clearly explained how humans are affecting the environment and how the environment is affecting humans.
Solution	The student included at least one possible solution and one interesting fact about the topic.
Presentation & Visuals	The student wrote their report clearly, included a drawing, map, or other visual, and showed understanding of the topic.

Case Study Topics

You may choose from the case study topics below for your research.

Alberta Oil Sands (Mining)	Large oil sands project in Alberta that extracts oil from sand and clay, changing the land and using a lot of water.
Amazon Rainforest Deforestation	Cutting down large areas of forest for farming, cattle ranching, and logging, reducing biodiversity.
2010 Deepwater Horizon Oil Spill	Massive oil spill in the Gulf of Mexico, harming sea life and coastlines.
Great Pacific Garbage Patch	A huge area of floating plastic and trash in the Pacific Ocean harming marine animals.
Aral Sea Drying (Water Diversion)	Once a large lake, now mostly dry because water was diverted for farming.
Melting Glaciers in the Himalayas	Glaciers shrinking due to climate change, affecting rivers and water supply for millions.
Purple Loosestrife in Canadian Wetlands	Tall plant from Europe that spreads fast, crowding out native wetland plants.
Palm Oil Plantations in Indonesia	Clearing tropical forests to grow palm oil, affecting wildlife like orangutans.
Three Gorges Dam, China	World's largest dam providing power but flooding villages and changing river habitats.
Coral Reef Damage from Climate Change	Warming oceans and pollution causing coral to die, affecting fish and tourism.

Example Case Study


Nathan's Case Study on Overfishing in the Atlantic Ocean

Overfishing in the Atlantic Ocean

Ever since I went fishing with my grandfather on a summer trip to Newfoundland, I've been fascinated by the ocean. I still remember pulling up my first codfish and feeling so proud. But last year, my grandfather told me that we can't fish for cod the way he used to when he was my age. He explained that too many fish have been taken from the ocean, and their numbers are much lower. That made me want to learn more about overfishing and why it's such a big problem.

Overfishing happens when people catch more fish than the ocean can replace naturally. In the Atlantic Ocean, overfishing has happened with several species, like cod, tuna, and swordfish. Big fishing boats are very advanced and can catch thousands of fish at once using giant nets or long lines with hundreds of hooks. While this seems efficient, it doesn't give the fish enough time to reproduce and grow in numbers. Some fishing methods also harm other animals, like dolphins, turtles, and seabirds, which get caught by accident.

Overfishing is a serious problem because when a fish population becomes too small, it can collapse. In the 1990s, the Canadian government had to ban cod fishing in Newfoundland because the population had dropped so much. This hurt many communities that depended on the industry for jobs and income. Overfishing also changes the whole marine ecosystem, because removing too many fish or prey can throw the food chain out of balance.

There are ways to help. Governments can set strict limits on how many fish can be caught each year and protect certain areas as "no fishing zones" so fish can recover. People can also choose seafood from sustainable sources, where fishing is done in a way that doesn't harm the long-term health of the species.

One interesting fact I found is that some scientists are using satellite tracking to watch fishing boats and make sure they follow the rules. That makes me feel hopeful that technology can help solve the problem.

Learning about overfishing has made me see the ocean differently. The next time I go fishing with my grandfather, I'll be thinking not just about catching fish, but about making sure there will be fish for future generations too.

Research

Answer the questions below about your chosen topic:

1) Which topic did you choose?

2) Describe the human activity. What are the humans doing and why?

3) Describe the problem being caused in the environment.

4) How is the environment affecting humans in this situation?

5) What can be done to stop or reduce the problem?

6) Other interesting facts about this topic.

PREVIEW

Draft

Write a rough copy of your Case Study

PREVIEW

PREVIEW

Peer Compliment Card

Write a kind note or compliment

Instruction

Write a kind note to a classmate about their Human Footprint Case Study presentation. Mention something they shared, like what human activity they researched, how it affects the environment, possible solutions they suggested, or an interesting fact they included.

To: _____
From: _____

PREVIEW

Example Compliment**To:** Nathan**From:** Sarah

I really enjoyed your case study on overfishing in the Atlantic Ocean. I didn't know that cod fishing was banned in Newfoundland in the 1990s because of low fish numbers. I liked how you explained both how humans affect the ocean and how the loss of fish affects people. Your solution ideas were clear and realistic.

Awesome job!

Rubric How did you do on the activity?

Criteria	1 Point	2 Points	3 Points	4 Points
Topic Choice	Topic missing or unclear	Topic chosen but not from list or unclear relevance	Topic chosen from list and somewhat relevant	Topic clearly chosen and relevant to human footprint
Research Quality	Little or no information collected	Basic information with few details	Clear information with some examples	Detailed, accurate research with strong examples
Environmental Impact		Only one side of impact explained (human on environment OR environment on human)	Both sides explained simply	Both sides explained clearly with examples or research
Solutions & Facts	No solution or fact included	Either a solution or a fact	One solution and one fact included	Multiple solutions and interesting facts included
Presentation & Visuals	Report incomplete or hard to follow, no visual	Report complete but unclear with minimal visual	Report clear with good visual	Clear, well-organized report with strong and detailed visual

Teacher Comments

Mark

Student Comments – What Could You Do Better?

Ocean Currents

The Five Oceans and Their Currents

The Earth has five oceans. From largest to smallest, they are the Pacific, Atlantic, Indian, Southern (Antarctic), and Arctic Oceans. Together, they cover about 71% of the planet's surface, making oceans the largest physical feature on Earth. Within each ocean, there are permanent streams of water called **ocean currents**. These currents move in a set direction from one part of the ocean to another and can be thousands of kilometres long and up to 200 kilometres wide.

Warm and Cold Currents

Ocean currents are **driven** by **warm** or **cold**. Warm currents form near the **equator**, where the water is **hotter** than the air. Cold currents start near the **North or South Pole**, where water is **colder** than the air. The temperature differences create patterns that affect both the environment and life in coastal areas.

Causes of Ocean Currents

Currents are moved by **convection** and **density**, including:

- **Wind** pushing water across the surface
- **Earth's rotation** (the Coriolis Effect)
- **Tides** caused by the Moon's gravity
- **Water temperature** changes
- **Salt content** in the water

Warm water is lighter and rises, while cold water is heavier and sinks. Salt also affects density—when saltwater evaporates or freezes, the water becomes saltier and sinks, pushing less salty water up. This creates powerful convection currents.

Impact on Weather and Rainfall

Warm ocean currents heat the air above and cause rain clouds. Since most of the world's rain comes from ocean water, these currents play a major role in controlling the weather. They can bring warm, wet weather to some areas and cool, dry conditions to others.

Example: The Gulf Stream

One of the most famous currents is the **Gulf Stream** in the Atlantic Ocean. It starts in the Gulf of Mexico, flows along the U.S. coast to Newfoundland, then crosses the Atlantic to Europe. Driven by convection, it pulls **cold Arctic water** southward while sending **warm tropical water** northward, helping to balance heat and rainfall worldwide.

Direction of Currents

In the **Northern Hemisphere**, currents move in a **clockwise** direction. In the **Southern Hemisphere**, they move **counterclockwise**, due to the Earth's rotation.

True or False

Circle whether the statement is true (T) or false (F).

1) Most of the world's rain originates from water evaporating over oceans.	T	F
2) Cold currents always begin near the equator where water is cooler.	T	F
3) The Gulf Stream helps move warm tropical water north toward Europe.	T	F
4) In the Southern Hemisphere, ocean currents rotate in a clockwise direction.	T	F
5) The amount of salt in ocean water affects ocean currents.	T	F

Questions

Information from the text to support your answer.

1) Name and explain three things that can change how ocean currents move.

2) Describe how salt content can create water density currents.

Did You
Know?

The Gulf Stream moves enough water daily to fill over 100 million Olympic pools. It carries heat from the tropics to northern Europe, keeping winters warmer. How might Europe's climate change if it slowed or stopped?

Experiment: Ocean Current

Objective**What are we learning about?**

Students will explore how temperature differences in water create ocean currents. They will observe how warm and cold water interact, helping them understand how ocean currents move heat and affect global weather.

Materials What will you need for the activity?

- 1 clear dish or shallow container
- Cold water (recently refrigerated or ice cubes in final setup)
- Hot water (recently boiled)
- Blue food colouring and red food colouring
- 2 separate cups or small containers for mixing
- Spoon for stirring and towel to prevent spills

Instructions**How will you complete the activity?**

PREVIEW

- 1) Pour cold water into one container and add 2-3 drops of blue food colouring until evenly mixed.
- 2) Pour hot water into the second container and add 2-3 drops of red food colouring. Stir until mixed.
- 3) Carefully pour the blue cold water into the clear dish until it is about one-third full.
- 4) Make sure there are no ice chunks in the dish, as these can change the results.
- 5) Slowly pour the red hot water into one corner of the dish.
- 6) Watch how the red and blue water move and swirl around each other.
- 7) Continue adding a small amount of hot water to see how the pattern changes.
- 8) Discuss how this model shows what happens in real oceans when warm and cold water meet.

Step-by-Step Guide

Follow the steps below to do the Ocean Current

Step		What to Do	Details & Tips
1	Prepare Your Area	Choose a flat workspace and put a towel under your dish.	Make sure the area is well-lit so you can see the colours.
2	Prepare Cold Water	Fill a cup with cold water and ice for 5 min. Remove ice. Add 2-3 drops of blue food colouring and stir.	Colour should be bright but not too dark. No ice chunks in final water.
3	Heat Water	Heat water until boiling. Pour into a cup. Add 2-3 drops of food colouring and stir.	Ask an adult for help with hot water. Be careful—it can burn skin.
4	Fill the Dish	Slowly pour the cold blue water into your dish until it is full.	Pour gently so the surface stays still.
5	Add Hot Water	Pick up one end of the spoon. Slowly pour a spoonful of hot red water near the surface.	Let it slide in without splashing. Watch the colours move.
6	Observe Movement	Look for swirling patterns in the warm and cold water mix.	Cold water will rise, cold water will sink—this is like ocean currents.
7	Add More if Needed	If movement slows, pour a little more hot red water.	This can help with swirling patterns.
8	Clean Up	Pour water down the sink. Wash and dry all items.	Wipe up any spills to avoid stains from food colouring.
-	Safety Tips	Always handle hot water carefully. Ask for help if needed.	Keep food colouring away from clothes—it can stain.

Experiment Video

You can watch this experiment on YouTube:

Title: Ocean Currents Activity

Link: <https://www.youtube.com/watch?v=aB-gBvX-524>

Understanding Check

Experiment: Ocean Current

Name: _____

How well do you understand the topics discussed below? Rate your understanding from 1 to 5 stars, with 1 being "I don't understand" and 5 being "I understand very well."

1) Why ocean currents are important for the Earth's climate	★★★★★
2) How warm water and cold water move differently	★★★★★
3) How temperature and density affect water movement	★★★★★
4) How ocean currents can affect rainfall and storms	★★★★★
5) How this experiment models real ocean currents	★★★★★

Name: _____

How well do you understand the topics discussed below? Rate your understanding from 1 to 5 stars, with 1 being "I don't understand" and 5 being "I understand very well."

1) Why ocean currents are important for the Earth's climate	★★★★★
2) How warm water and cold water move differently	★★★★★
3) How temperature and density affect water movement	★★★★★
4) How ocean currents can affect rainfall and storms	★★★★★
5) How this experiment models real ocean currents	★★★★★

Name: _____

How well do you understand the topics discussed below? Rate your understanding from 1 to 5 stars, with 1 being "I don't understand" and 5 being "I understand very well."

1) Why ocean currents are important for the Earth's climate	★★★★★
2) How warm water and cold water move differently	★★★★★
3) How temperature and density affect water movement	★★★★★
4) How ocean currents can affect rainfall and storms	★★★★★
5) How this experiment models real ocean currents	★★★★★

El Niño And La Niña

How the Cycle Works

Warmer or colder than average ocean temperatures in certain regions can cause major shifts in weather patterns around the world. This is called the **El Niño Southern Oscillation (ENSO) Cycle**. It is caused by the **Trade Winds**, which normally blow near the equator from the west coast of South America toward Asia. The ENSO Cycle is a repeating back-and-forth change in which warm and cool water in the Pacific Ocean trade places as the winds change strength and direction. **El Niño** is the warm phase, and **La Niña** is the cold phase.

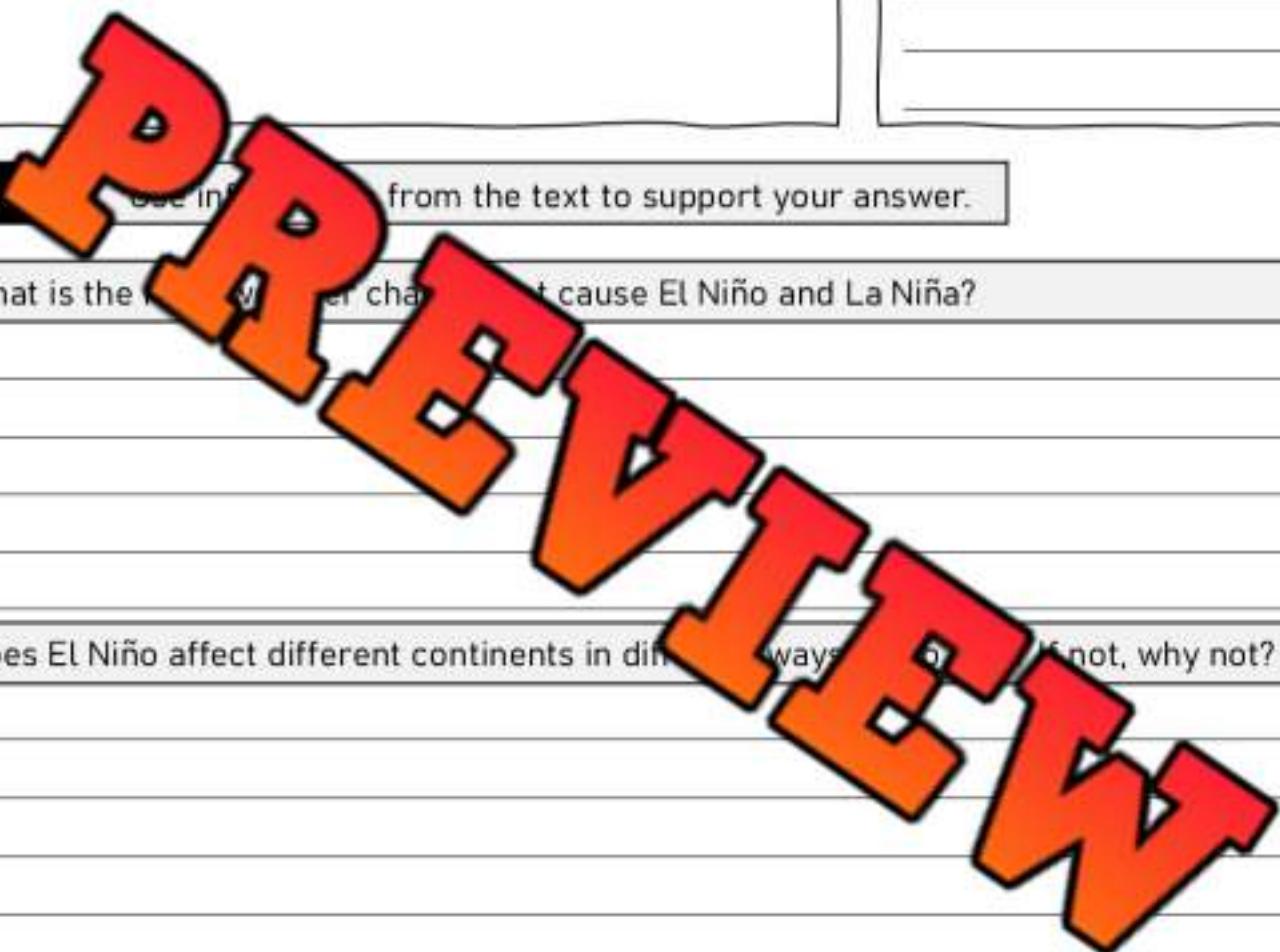
Normal Cycle

During a **Normal Year**, strong Trade Winds push warm surface water west toward Asia and Australia. This creates a huge pool of warm water in the western Pacific. Along South America's coast, cold water from the deep rises to the surface in a process called **upwelling**, which is important to feed marine life. Rain tends to form over warm water, so countries along the western Pacific receive heavy rainfall, while the west coast of South America remains much drier.

El Niño – The Warm Phase

When the Trade Winds weaken, warm surface water drifts east toward South America. This is **El Niño**. The warmer water pulls the **Jet Stream** farther south than usual. As a result:

- Heavy rain and flooding occur in the southern United States.
- Warmer, drier winters happen in the Pacific Northwest and western Canada.
- Australia experiences drought because cooler water is on their side of the Pacific, reducing rainfall.


La Niña – The Cold Phase

When the Trade Winds blow stronger than normal, more cool water builds up along the coast of South America. This is **La Niña**. The colder Pacific water pushes the Jet Stream northward, bringing drought to the southern United States and heavy rain with flooding to the Pacific Northwest. In Australia, La Niña often causes wetter summers, sometimes leading to flooding. It can also make Atlantic hurricane seasons stronger, as warmer water remains in the Atlantic to fuel storms.

Visualization

What were you picturing while you were reading? Describe your picture.

Question: Use information from the text to support your answer.

1) What is the major weather change that cause El Niño and La Niña?

2) Does El Niño affect different continents in different ways? If not, why not?

True or False

Circle whether the statement is true (T) or false (F).

1. El Niño happens when warm water drifts east toward South America.	T	F
2. Strong Trade Winds push warm water toward Asia and Australia normally.	T	F
3. La Niña pushes the Jet Stream farther south than normal.	T	F
4. Upwelling brings cold water and nutrients to South America's coast.	T	F
5. El Niño brings wetter summers to Australia most of the time.	T	F

Memory Game – Natural Processes

Objective**What are we learning about?**

Students will learn about natural processes that shape the Earth, such as erosion, deposition, glaciation, weathering, and ocean currents, by playing a memory match game. Each card will show a term or image, and students will match it with the correct definition. This will help them understand how each process changes the physical environment.

Materials What materials do you need for the activity?

- Set of Memory Game cards (provided)
- A small table or clear area on the floor

Instructions How will you complete the activity?

1. Divide the class into groups of 3 or 4. Give each group a set of Memory Game cards. (provided)
2. Have each group lay all the cards face down in a grid on a table.
3. The students take turns flipping over two cards at a time, trying to find a matching term and its definition.
4. If a student finds a match, they remove those cards from the grid and keep them.
5. If the cards do not match, they are turned back over, and the next student takes a turn.
6. The game continues until all the cards have been matched.
7. After the game, review the terms and definitions with the class.
8. Discuss why these terms are important to understand and how they relate to the topic.

Erosion

Movement of rock, soil, or sand by wind, water, ice, or gravity forces.

Glaciation

Formation and slow movement of ice sheets that carve valleys and melt into the surface.

Weathering

Breaking down rock into smaller pieces by wind, water, temperature, or chemicals.

Subduction

One tectonic plate sinks under another, forming trenches, volcanoes, and mountain ranges.

PREVIEW

Volcanic Activity

Eruption of magma through Earth's crust forming mountains, islands, and changing landscapes.

PREVIEW

Flooding

Sudden ground shaking caused by tectonic plate movement releasing energy deep within Earth.

Landslides

Rapid downhill movement of rock, soil, or debris due to gravity and weather.

Tsunamis

Huge ocean waves triggered by underwater earthquakes, landslides, or volcanic eruptions displacing water.

Tectonic Uplift

Raises sections of Earth's crust, forming mountains and changing land elevation.

PREVIEW

Avalanches
Sudden rush of snow, ice, and debris down a mountain slope due to gravity.

Hurricanes
Powerful rotating storms with strong winds and heavy rain forming over oceans.

El Niño
Warm phase of ocean cycle that changes weather, causing floods or droughts.

La Niña
Cool phase of Pacific Ocean cycle that shifts weather, increasing rain or dryness.

Quiz
Check-In

This quiz will assess students' understanding of the concepts covered in the memory game activity.

Name: _____

Mark

Pick two terms from the memory game. Write one sentence about each one.

_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____

Name: _____

Mark

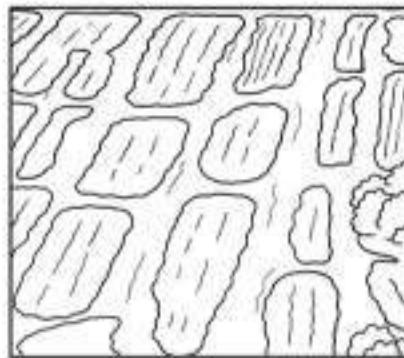
Pick two terms from the memory game. Write one sentence about each one.

_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____

Name: _____

Mark

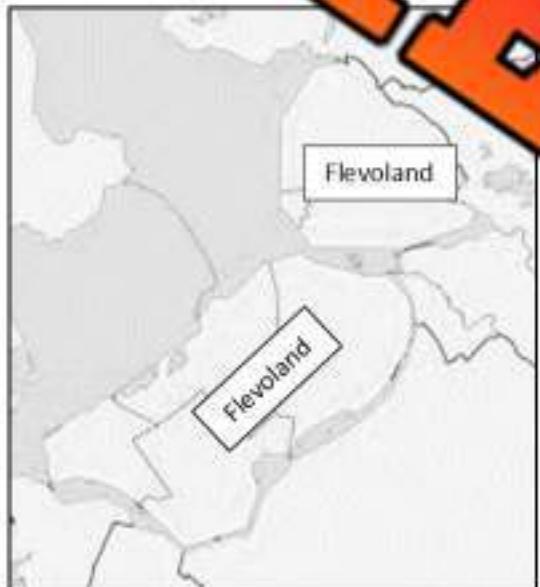
Pick two terms from the memory game. Write one sentence about each one.


_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____
_____	_____

Land Reclamation

Land Reclamation

Land reclamation refers to either:


- creating new land from **marshes, riverbeds or oceans**
- returning land that has been disturbed by mining or use as a landfill and returning it to an improved condition.

Polders in the Netherlands

The largest example of the first type of land reclamation is the **polder** in the Netherlands. A polder is a piece of land that has been reclaimed from a body of water. The Netherlands is a low-lying country in Europe. Polders are created by building **dykes** that hold back the large body of water and then draining the inland section of land with a series of drainage canals.

The Netherlands have been using windmills to pump water from one area of land to another for hundreds of years.

In the 1920s, a land reclamation project began in the Netherlands. Another province called **Flevoland** was created in an area that used to be a lake called the **IJsselmeer**. It claimed 1620 square kilometers of land. Over 400,000 people live in this province.

Notre Dame Island in Montreal

Notre Dame Island is a small island in the St Lawrence River in Montreal. It was built using 15 million tons of rock. It was built to create the Montreal Metro underground rail system. It was built on the island. Since then, the rock has been removed, and the island has been turned into a park with gardens and a lake for swimming in summer and skating in winter. The island is 62 acres.

Reclaiming land used for Natural Gas Wells.

Natural Gas wells are usually used for 20 to 30 years before they are no longer productive. After that companies have the responsibility to restore the land to its condition before the well was opened. The land needs to be reshaped with drainage systems added. The layers of soil that were removed for the well need to be replaced and topped with topsoil and then trees and grass need to be replanted.

The site needs to be monitored to check soil and water quality and to make sure the replanted vegetation is growing. The process is the same when landfills are closed. They need to be returned to their former or improved condition and monitored to make sure they are not a source of groundwater or air pollution from methane gas.

True or False

Circle whether the statement is true or false.

1) Land reclamation is taking land back from previous owners.	True	False
2) Notre Dame Island was formed from soil removed for the Montreal Metro.	True	False
3) Flevoland was reclaimed from an area that used to be ocean.	True	False
4) Polders in the Netherlands are created by flooding low-lying farmland.	True	False
5) Restoring used wells includes replacing topsoil and planting vegetation.	True	False
6) Land reclamation can return damaged areas to their former condition.	True	False

Question: Circle the information from the text to support your answer.

1) What are the benefits of land reclamation project after an oil well is no longer in use?

2) What are the benefits of land reclamation?

Summarize

Summarize the reading by writing the important information.

Interview With An Indigenous Knowledge Keeper

Jamie: Hi! I'm learning about how people protect the environment. Can you tell me how Indigenous communities take care of the land?

Knowledge Keeper: Of course, Jamie. Indigenous communities have cared for the land for thousands of years. They follow traditional knowledge passed down through Elders, stories, and ceremony. This helps them understand how to live in balance with nature.

Jamie: What is traditional knowledge?

Knowledge Keeper: Traditional knowledge is the wisdom that comes from observing the land, water, and weather over many generations. It's not written in books. It comes from experience, stories, and deep respect for the Earth.

Jamie: Do Indigenous people respond to changes in the land?

Knowledge Keeper: Yes! They closely observe signs in nature. For example, if berries grow late, they know the seasons are changing. If water levels drop, they may change where they fish to protect spawning areas.

Jamie: That's amazing. Are there examples of how they protect the land?

Knowledge Keeper: Yes. In British Columbia, the Haida Nation protects forests using traditional harvesting rules. In northern Ontario, many Cree communities check ice conditions and monitor moose populations before hunting. These actions help keep ecosystems healthy.

Jamie: Do Indigenous people work with scientists too?

Knowledge Keeper: Absolutely. Today, many Indigenous communities work with researchers to track climate change. Elders share knowledge about rising temperatures, melting permafrost, and species that are disappearing. This teamwork helps everyone make better decisions for the future.

Jamie: Why is it important to learn from the land?

Knowledge Keeper: Because the land teaches us how to live. It gives us food, water, medicine, and shelter. When we respect it, it continues to provide. That's why many Indigenous Peoples say, "The land is our teacher."

Jamie: I really liked learning this. I want to help take care of the land too.

Knowledge Keeper: That's wonderful, Jamie. Learning is the first step. Keep listening, observing, and respecting nature—just like our ancestors always have.

PREVIEW

True or False

Is the statement true or false?

1) Indigenous knowledge is mainly learned from printed books and maps.	True	False
2) The Haida Nation protects forests with traditional harvesting rules.	True	False
3) Cree communities hunt moose without checking population levels.	True	False
4) Learning from land means taking only what is needed.	True	False
5) Listening to nature is part of being an informed citizen.	True	False
6) Indigenous communities have protected the land for thousands of years.	True	False

Questions to answer based on the questions below.

1) How do Indigenous communities respond to environmental changes?

2) What does the phrase "the land is our teacher" mean?

Journal Entry

Pretend you're Jamie—write a journal entry about the interview.

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class

Name: _____

Mark

2 Truths and a Lie – Can you
find the one that's not true?

The Haida Nation uses traditional harvesting rules today.
Indigenous people predict seasons by watching nature.
Indigenous land practices harmed ecosystems in the past.

Name: _____

Mark

2 Truths and a Lie – Can you
find the one that's not true?

The Haida Nation uses traditional harvesting rules today.
Indigenous people predict seasons by watching nature.
Indigenous land practices harmed ecosystems in the past.

Name: _____

Mark

2 Truths and a Lie – Can you
find the one that's not true?

The Haida Nation uses traditional harvesting rules today.
Indigenous people predict seasons by watching nature.
Indigenous land practices harmed ecosystems in the past.

Name: _____

Mark

2 Truths and a Lie – Can you
find the one that's not true?

The Haida Nation uses traditional harvesting rules today.
Indigenous people predict seasons by watching nature.
Indigenous land practices harmed ecosystems in the past.

Name: _____

Mark

2 Truths and a Lie – Can you
find the one that's not true?

The Haida Nation uses traditional harvesting rules today.
Indigenous people predict seasons by watching nature.
Indigenous land practices harmed ecosystems in the past.

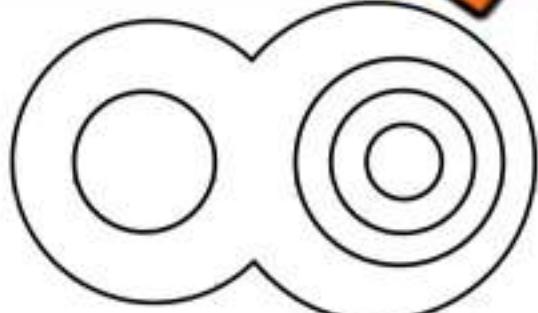
Name: _____

Mark

2 Truths and a Lie – Can you
find the one that's not true?

The Haida Nation uses traditional harvesting rules today.
Indigenous people predict seasons by watching nature.
Indigenous land practices harmed ecosystems in the past.

Topographical Map



A **topographical map** is a special type of map that shows the shape and height of the land. It uses contour lines to represent elevation. **Each contour line connects points that are the same height above sea level.** When the lines are close together, it means the land is steep. When they are far apart, it means the land is flat or gently sloping.

In the picture, the model shows a hill with several steps going up to the peak. On the topographical map, each step is shown as a separate contour line. The smallest loop in the centre shows the highest point of the hill. As you move outward from the centre, each larger loop represents a lower elevation. This is how contour lines help us to show the 3D shape of the land on a flat map.

Exercise

Draw the shape of a hill that matches this contour map.

In this picture, the lines go around each hill or mountain, showing how high or low the land is. **The smallest loops at the top show the highest points, and the bigger loops lower down show where the land is closer to the ground.** The lines are closer together on steep slopes and farther apart where the land rises slowly. Because **each line shows one height level**, we can see the shape of the land without needing to see it in real life.

Reading A Topographical Map

Research

Take a close look at the map below and answer the questions

1) What information does this topographical map tell us?

2) What specifically do you notice? (Ex. Where are the roads and railway mainly located?)

Word Search

Find the words from the word bank.

Word Bank: Physical Geography Terms

Erosion	Weathering	Glacier	Delta	Volcano	Mountain
Plateau	Valley	Tectonic	Magma	Lava	Sediment
Fault	Mantle	Crust	Earthquake	Climate	Landform

Word Scramble

Unscramble the words from the word bank.

DLRAFMON		EDNSEMTI	
LAAPUTE		OUIMATNN	
MNEALT		ETNWIEGARH	
LAEGRCI		GAAMM	
ATKEAQERUH		ECITNOCT	

Role-Play: Humans And The Environment

Objective**What are we learning about?**

Students will explore how the environment affects human life and how human actions impact the environment, by acting out real-world scenarios and reflecting on both short-term and long-term effects for people and nature.

Materials**What do we need for our activity?**

- Scenario cards (describing various situations) (provided)
- Props or costumes (optional)
- Timer or stopwatch

Instructions**How will we complete our activity?**

- 1) Divide the class into small groups of 4 to 5 students.
- 2) Provide each group with a scenario card that outlines a specific situation related to the topic being studied.
- 3) Give out roles to each student in the group, assigning them a character within the scenario, or let them decide and take roles.
- 4) If available, distribute props or costumes that may help students embody their roles more effectively.
- 5) Set the timer to allocate a specific amount of time for the groups to discuss and act out their scenarios.
- 6) Allow each group to present their role-play to the class.
- 7) After all groups have presented, initiate a class discussion to reflect on the different approaches and outcomes observed during the role-plays.
- 8) Distribute reflection sheets for students to express what they learned and felt during the activity.

Criteria

Use the criteria below to complete the activity.

Criteria	Description
Creativity	Show what your character thinks and feels. Use ideas that make the role-play more real and interesting.
Voice	Speak clearly and loudly so others can hear. Change your voice to match your character's feelings.
Actions	Use body movements, facial expressions, and actions that match your character's story.
Stay in Role	Stay in character like your character. Don't break role until you're finished.
Teamwork	Work together for a common goal. Be helpful. Take turns and make sure everyone joins.

Scenario Cards: Read about the scenarios below.

Scenario	Description
1 Hurricane in the Coastal Town	A small coastal town has been hit by a powerful hurricane. Homes are damaged, streets are flooded, and many people have been evacuated to a local school gym. The mayor is meeting with community leaders to decide how to get food and clean water to families. The animal shelter, a group of volunteers is trying to rescue stranded pets. One store owner is upset because his shop was destroyed, and he wants help rebuilding. Local wildlife officers are worried about seabirds whose nests were blown away.
2 The Logging Dispute	In a forested area, a logging company has started cutting down large sections of trees. Workers are happy for the steady jobs, but hunters and campers are upset because the forest trails are gone. Heavy logging trucks are damaging small roads and creating noise. A nearby river has become muddy from soil washing into it, and fish numbers are dropping. Environmental groups are arriving to protest, while the company promises to plant new trees in the future.

Scenario Cards

Cut out the topics below.

Scenario	Description
3 Pesticide Problem	<p>A farming community has been using chemical pesticides to protect crops. The crops look healthy, but bees and butterflies are disappearing at an alarming rate. A beekeeper is losing many hives, and the honey harvest is the smallest in years, leaving her worried about the future. Some residents fear chemicals are getting into drinking water and harming families. Local farmers argue they need pesticides to survive financially and feed the community. Scientists arrive to test the soil and water, while anxious parents start petitions to reduce chemicals, but it's too late.</p>
4 The Melting Glacier	<p>A northern community near a glacier has noticed that the glacier is melting faster each summer. Hunters remember when the ice covered the whole valley, shining bright every summer. Melting ice is causing the river to flood each spring, damaging roads, homes, and farmland. A group of hunters is concerned because the animals they depend on for food are moving farther away into the mountains. Local leaders are debating whether to build a protective wall or move the village entirely. Skiing and snowmobiling guides are losing work because fewer tourists are coming to see the natural beauty, and some fear the loss will destroy the town's economy.</p>
5 The Plastic Waste Crisis	<p>A lakeside town is seeing more and more plastic bottles, bags, and wrappers in the water and along the shoreline. Tourists leave trash behind after picnics, and strong winds blow it into the lake, scattering it far and wide. Fish swallow small pieces of plastic, and a local fishing business is struggling because customers worry about contaminated fish reaching their tables. Volunteers try to organize clean-up days, but the trash keeps returning faster than it can be removed. Store owners debate switching to paper bags, but some think it will cost too much and hurt profit. Wildlife rescuers are finding more injured animals trapped in discarded plastic every week.</p>

Scenario Cards

Cut out the topics below.

Scenario	Description
7 The Factory Smoke	<p>A new factory on the edge of town is producing steel for construction. While it brings many jobs, it also releases thick black smoke into the air. People living nearby complain about a strong smell and soot covering their houses. The local clinic sees more patients with breathing problems. Children are not allowed to play outside on bad days. Company leaders say they are following regulations, but residents demand better air filters and reduced emissions.</p>
8 Lake Taken Over	<p>A lake that was once a popular place to fish has been overrun by an invasive species of fish. These fish are eating the native fish that local species need to survive. The fishing industry is struggling, and many people are losing their jobs. Scientists are trying to figure out a way to remove the invasive fish without harming other wildlife. A local festival that celebrates the native fish is in danger of being cancelled. At the same time, restaurants are trying to create new dishes using the invasive fish to attract visitors.</p>
9 Wetland at Risk	<p>A wetland on the edge of a town is being drained to build new houses. The project is bringing jobs, but the wetland is home to many birds, frogs, and plants. Bird watchers and scientists are upset about what they are losing. Construction workers are clearing trees and digging channels to drain away. Heavy trucks are making the roads busy and noisy. Some families are happy about new homes being built, but others worry about losing the natural flood protection the wetland provides.</p>
10 The Oil Spill	<p>A coastal community depends on fishing, but a recent oil spill has covered the harbour in thick sludge. Boats cannot leave, and the smell is strong. Fishermen fear losing the season's income. Volunteers scrub seabirds and clean the shoreline. The company responsible offers compensation, but some residents say it's not enough. Tourists cancel trips, and the local seafood restaurant struggles to find clean fish to serve.</p>

My Role

Draw a picture of what your character did during the role-play.

PREVIEW

Rubric

How did you do on the activity?

Criteria	1 Point	2 Points	3 Points	4 Points
Creativity	Did not try to pretend.	Tried a little but didn't add ideas.	Used imagination and helped make the scene better.	Used great ideas and made the role-play exciting and real.
Voice	Hard to hear or too quiet.	Sometimes clear, but not loud or strong.	Clear and matched the feelings of the character.	Loud, clear, and showed strong feelings with voice.
Action	Did not act like the character.	A few actions, not always connected to role.	Used actions that matched the character's role.	Used many strong actions that were clear and realistic.
Stay in Role	Acted like themselves, not the character.	Acted like the character, but did not stay in character.	Mostly stayed in character during the scene.	Stayed in character the whole time.
Teamwork	Did not help or listen.	Helped a little.	Helped others to succeed with the project.	Shared, listened, and helped make the group's work better.

Teacher Comments

Work

Student Comments – What Could You Do Better?

Name: _____

Date: _____

Unit Test: Physical Patterns In A Changing World

Total	Mark
/	/

1) When two tectonic plates push together...	2) These mountains have magma inside...
a) Divergent Boundaries	a) Fold Mountains
b) Convergent Boundaries	b) Fault Block Mountains
c) Transform Boundaries	c) Volcanic Mountains
d) All of the above	d) All of the above
3) Which is a major type of volcano?	4) What is the number one cause of erosion?
a) Shield Volcano	a) Wind
b) Stratovolcano	b) Storms
c) Cinder Cone	c) Water
d) Ash Volcano	d) Humans
5) Which of the following control soil erosion?	Which country has undergone many land reclamation projects?
a) Windbreaks	The Netherlands
b) Deltas	b) Canada
c) Terracing	c) China
d) Reforestation	d) Australia
7) Which landform is built from layers of lava?	8) Which type of valley is carved by glaciers?
a) Shield Volcano	a) V-Shaped
b) Plateau	b) Flat-Bottom
c) Fold Mountain	c) Crater
d) Delta	d) U-Shaped
9) What landform is built by river sediment?	10) What side of a mountain is dry and windy?
a) Trench	a) Windward
b) Glacier	b) Summit
c) Delta	c) Leeward
d) Plateau	d) Glacier Side

PREVIEW

Define

What do the terms below mean?

Mark

/

Term	Definition – What does it mean?
Tectonic Plate	
Dyke	
Glacier	

Short Answer

Answer the questions

Mark

/

1) What is erosion? Provide at least one example.

PREVIEW

2) What is the water cycle? How do mountains affect the water cycle?

PREVIEW

3) What is a wetland? Provide 4 examples of wetlands.

PREVIEW

Long Answer

Answer the questions below.

Mark

/

1) How have human activities affected our physical environment? Make sure to include at least 5 ways in which humans have changed our environment.

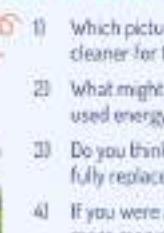
PREVIEW

2) How do ocean currents affect weather around the world? Give examples like the Gulf Stream, El Niño, or La Niña.

Google Slides Lessons Preview

Ontario Geography

Natural Resources Around the World- Grade 7


3-Part Lesson Format

Part 1 – Minds On!

- Learning Goals
- Discussion Questions
- Quotes
- And More!

Climate Change & Renewable Energy

DISCUSSION QUESTIONS

A **B** **C**

- 1) Which picture, A or B, do you think is cleaner for the air? Why?
- 2) What might happen if the world only used energy like picture A?
- 3) Do you think renewable energy can fully replace Non-Renewable? Why?
- 4) If you were a leader, would you invest more money in A or B?

Climate Change & Renewable Energy

Play match cause & effect with the other students in your group or the class next door.

Causes	Effects
Burning fossil fuels releases carbon dioxide into the atmosphere	A Produces renewable electricity that is clean and cost effective
Greenhouse gases trap heat like a blanket around Earth	B Adds large amounts of greenhouse gases into Earth's atmosphere
Glaciers melt faster in the Arctic and other cold regions	C Causes ocean levels to rise and reduces fresh water supplies
Canada builds hydroelectric plants across its rivers and lakes	D Helps countries agree on renewable energy targets and emission cuts
The United Nations works with countries to cut greenhouse gases	E Reduces crop yields and increases food shortages worldwide
Droughts become more common in farming regions	F Warms the planet, leading to climate change and global problems

Part 2 – Action!

- Surveys/Polls
- Matching
- Drag and Drop
- Videos
- And More!

Consolidation

THREE SENTENCE SUMMARY

Write three sentences that explain what climate changes, how greenhouse gases contribute, and why renewable energy is important for protecting people, the environment, and the future.

Three Sentence Summary

Three sentence summary: [Empty box for writing]

Part 3 – Consolidation!

- Exit Cards
- Quick Draw
- 3-2-1 Reflection
- One-Sentence Summary

Ontario Geography

Natural Resources Around the World- Grade 7

Renewable Energy

Read the paragraph. Use the word bank to fill in the missing words.

Renewable energy comes from natural [] that can be used again and [] wind farms use tall [] with blades that spin and turn []. Solar panels capture light from the [] and change it into []. Biomass uses plants, waste, and animal [] to create fuel like []. Renewable energy reduces harmful [] gases but can still be very [] to build.

Word Bank: Electricity, Ethanol, Repeated, Expensive, Sun, Turbines, Sources, Greenhouse, Generators, Manure

Fish Stocks & Overfishing

Sort the following statements into two groups:
 ✓ The statement is correct ✗ The statement is incorrect

1) Early explorers salted fish so it would last on long voyages.
 2) Shrimp, lobster, and snow crab now replace cod for Canadian fisheries.
 3) Overfishing happens when fish are caught faster than they reproduce.
 4) Bycatch has no negative effect on smaller species or ecosystems.
 5) The Law of the Sea gives control 50 miles offshore.
 6) Fish are considered common pool resources since no one owns them.
 7) Tuna populations fell because smaller prey fish were destroyed.
 8) In the 1500s, cod were so scarce explorers avoided Newfoundland.
 9) More than 120 million people work directly in fishing and fish farming.
 10) The Canadian cod moratorium quickly restored fish stocks within five years.

Cartoon character: A boy with glasses and a clipboard, marking a box with a checkmark and another with an X.

CROSSWORD

Do the crossword puzzle below using the key terms and clues.

Across:

2. A period with very little or no rainfall.
4. Fertile land slowly turning into desert over time.
5. Animals eating too much grass and plants in one place.

Down:

- 1) Soil being carried away by wind or water.
- 3) People moving to another place to survive.
- 4) Cutting down trees and leaving the ground bare.

Blank crossword grid for the student to fill in.

Ontario Geography

Natural Resources Around the World- Grade 7

Deforestation

Find the words in the wordsearch.

UVRMMODEDFGELMKLCDFYLRG	ACTHZMLVBGIXQBPXPFYECKT
XUMOMKWSSEQJNQWVDEKHLOOD	ROOSDUNGREENHOUSEUJGBE
YHKPRAINFORESTLNREGYKOR	ZAFCMBKXLEYHNZAWUCKUOO
PBJONOLUOBEKPFMEVNANHKS	WINDFIREORNHGEJTAJRENTI
JTYMTDZEDOMYVLAUNSIOLQ	WAHHACHAIAOSHXCXMFEXOKFON
GTJFSZRHTNWEOLBWNDAOM	GRAZINGOGSIVRRRIXGHQHOC
UDEFORESTATIONCBDEPGKLV	UDEFORESTATIONCBDEPGKLV

Deforestation	Rainforest
Carbon	Oxygen
Greenhouse	Erosion
Flooding	Climate
Wildfire	Grazing
Roots	Habitat

Natural Resources

Read the situations. Decide if each shows ethical use of natural resources.

1) A company cuts down a forest but plants new trees after.	Yes
2) A pipeline is built on Indigenous land without asking permission.	No
3) A business clears sacred land for profit without consulting local people.	No
4) A community shares river water fairly between farming and wildlife needs.	Yes
5) A mining project pollutes a local lake and harms fish habitats.	No
6) A town builds wind turbines to create renewable electricity for local homes.	Yes
7) A fishing boat takes more fish than allowed, harming the fish population.	No
8) Farmers rotate crops to keep the soil healthy for future harvests.	Yes
9) A city recycles materials like glass, plastic, and paper to save resources.	Yes
10) A dam is built that floods Indigenous land without fair discussion.	No

Actions On Sustainability

Move the letter A or B into the box to show your answer.

1) Which year created the UNEP program? A) 1972 B) 1992	2) Which report first defined sustainability clearly? A) Rio+20 B) Brundtland
3) Which summit made the Agenda 21 plan? A) Paris B) Rio	4) Which deal cut greenhouse gas emissions? A) Kyoto B) Paris
5) Which year set Millennium Development Goals? A) 1987 B) 2000	6) Which meeting created "The Future We Want"? A) Rio+20 B) Paris
7) Which deal aimed to stop warming above 2°? A) Paris B) Kyoto	8) Which summit had 178 countries attending? A) Kyoto B) Rio

Workbook Preview

Grade 7 Geography Unit

B. NATURAL RESOURCES AROUND THE WORLD: USE AND SUSTAINABILITY

	Curriculum Expectations	Pages
B1.1	Analyse interrelationships between the location/accessibility, mode of extraction/harvesting, and use of various natural resources	8-10, 16-17, 21-24, 44-47, 62-64, 69-70, 79-80, 89-94
B1.2	Analyse natural resource extraction/harvesting and use in some specific regions of the world, including the sustainability of these practices	14-15, 18-20, 25-26, 30-37, 48-51, 60-61, 65-68, 71-73, 86-87, 95-100
B1.3	Analyze the effects of various resource extraction and/or use, including the impact on the environment and local communities, and propose solutions to mitigate negative impacts.	11-12, 27-29, 78
B1.4		52-59, 86-88, 100
B2.1		9-94
B2.2	Gather and organize data and information from a variety of sources on the impact of resource extraction/harvesting and/or use, ensuring that their sources reflect more than one perspective	7-10, 8-10, 16-17, 21-22, 32-33, 62-64, 77-78
B2.3	Analyse and construct maps as part of their investigations, with a particular focus on exploring the spatial boundaries of and, where applicable, patterns relating to their topics	18-20, 23-24, 69-70
B2.4	Interpret and analyse data and information relevant to their investigations, using various tools and spatial technologies	16-17, 27-29, 67-68, 74-76
B2.5	Evaluate evidence and draw conclusions about issues related to the impact of natural resource extraction/harvesting and/or use around the world	14-15, 25-26, 30-31, 34-37, 48-51, 60-61, 62-66, 71-73, 79-87, 95-100
B2.6	Communicate the results of their inquiries using appropriate vocabulary and formats appropriate for specific audiences	7, 11-13, 38-47, 52-59, 88-100

Preview of 80 pages from
this product that contains
141 pages total.

	Curriculum Expectations	Pages
B3.1	Identify Earth's renewable, non-renewable, and flow resources (e.g., renewable: trees, natural fish stocks, soil, plants; non-renewable: fossil fuels, metallic minerals; flow: solar, running water, ocean currents, tides, wind), and explain their relationship to Earth's physical features	8-24, 30-37, 44-47, 52-59
B3.2	Describe ways in which people use the natural environment, including specific elements within it, to meet their needs and wants (e.g., rock is quarried to make building materials, roads; trees are used for lumber for buildings, wood for furniture, pulp for paper, logs for fuel; fossil fuels are used for heating and cooling, to generate energy for industry, to power vehicles, to make plastics; water is used for drinking, irrigation, to produce electricity, to cool nuclear reactors; animals are used for food, clothing, recreation; the natural environment enables people to live off the land and provides opportunities for relaxation, education, and/or recreation)	8-13, 21-26, 44-47, 52-59, 60-61
B3.3	Identify significant short- and long-term effects of natural resource extraction/harvesting and use on people and the environment (e.g., deforestation, desertification, smog, acid rain, climate change, soil contamination, habitat destruction, flooding)	14-17, 27-29, 38-43, 48-51, 60-61, 62-68, 71-76, 79-83
B3.4	Describe the perspectives of different groups (e.g., a traditional indigenous community, an environmental organization, a multinational mining or forestry company, the residents of a resource town) regarding the use of the natural environment to meet human needs	25-26, 38-43, 48-51, 62-66, 77-80, 84-87
B3.5	Describe some responses to social and/or environmental challenges arising from the use of natural resources (e.g., the increased use of wind, solar, or tidal energy; reduced consumption; promotion of energy-saving strategies such as the use of energy-efficient appliances; promotion of fair trade; marketing of "ethical" products such as "ethical oil" or "ethical diamonds"; boycotting less sustainable products or companies using unsustainable practices)	18-20, 27-37, 67-78, 81-85
A3.6	Demonstrate the ability to extract information from, analyse, and construct GIS maps relating to natural resources around the world (e.g., to determine the location of oil refineries and their proximity to population centres and agricultural land; to show areas of deforestation and current land use on previously forested land)	69-70

NATURAL RESOURCES AROUND THE WORLD

PREVIEW

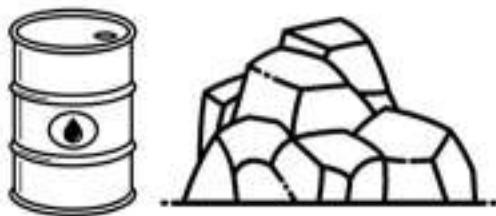
Natural Resources

Why People Depend on Natural Resources

People need many things to live safely and comfortably. They must have housing, food, and water to meet their basic needs. They also use other items to enjoy life, like cars, phones, computers, and televisions. All of these require raw materials to build them, and many need power or fuel to work.

Natural resources are things found in nature, such as air, water, plants, sunlight, soil, rocks, animals, and oil. Some are found underground. A material becomes a **natural resource** when humans find it useful. For example, minerals like gold, silver, copper, and aluminium have been on Earth since it was formed, but they only became resources when people began to extract and use them.

These resources do not spread evenly around the world. People often settle in areas where important resources, such as clean water and fertile soil for food, are available.


Three Main Types of Natural Resources

Natural resources are grouped into three categories: **renewable resources**, **non-renewable resources**, and **flow resources**.

1. Renewable Resources

These can be replaced naturally over time, allowing for repeated use. Examples include:

- Water recycled through the water cycle
- Trees and plants that can be replanted
- Animals that reproduce

2. Non-renewable Resources

These have a limited supply or take millions of years to form, so they cannot be replaced within a human lifetime. Examples include oil, coal, and natural gas. Minerals are also non-renewable.

3. Flow Resources

These are available only where and when they occur in nature. Examples include waterfalls for **hydroelectric power**, sunlight for **solar panels**, wind for **wind turbines**, and tides for **tidal energy**. They cannot be stored unless special technology is used.

How Humans Value and Use Resources

Resources gain value when humans recognize their usefulness. People create technologies and systems to collect and process them. Water treatment plants, mining operations, and hydroelectric dams are all examples of how humans access and use resources. The choice of which resources to use—and how to use them—affects the environment and the **sustainability** of life for future generations.

True or False

Circle whether the statement is true or false.

1) Flow resources can be stored for later use without technology.	True	False
2) Non-renewable resources can take millions of years to form naturally.	True	False
3) Things in nature become natural resources when humans value them.	True	False
4) Flow resources are non-renewable resources.	True	False
5) Flow resources include sunlight, tides, and waterfalls in certain places.	True	False
6) All renewable resources are always replaced instantly after being used.	True	False

Question 11: Find two pieces of evidence from the text to support your answer.

1) Describe how a nation can be influenced by resources.

2) Explain how flow resources are different from variable resources.

Making Connections

What does this reading remind you of in your life?

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

What is a natural resource, and
give three examples each for renewable
and non-renewable resources?

Name: _____

Mark

What is a natural resource, and
give three examples each for renewable
and non-renewable resources?

Name: _____

Mark

What is a natural resource, and
give three examples each for renewable
and non-renewable resources?

Name: _____

Mark

What is a natural resource, and
give three examples each for renewable
and non-renewable resources?

PREVIEW

Pictionary: Name That Resource

Objective**What are we learning about?**

Students will learn about natural resources, including renewable, non-renewable, and flow resources. They will draw and guess these resources while learning about their characteristics, uses, and how people depend on them.

Materials What will you need for the activity?

- Markers or pens
- Resource cards (examples: oil, coal, diamond, sun, wind, water, etc.)

Instructions How will you complete the activity?

- 1) Split the class into two teams, maybe by rows or groups of desks.
- 2) Have one student from Team A come up and pick a card. They should keep the card a secret from everyone else.
- 3) The student then draws what's on the card on a whiteboard or large piece of paper.
- 4) Start a timer for 2 minutes. During this time, Team A tries to guess what is being drawn.
- 5) If Team A guesses the drawing correctly before the timer goes off, they earn a point.
- 6) Next, it's Team B's turn. A student from Team B picks a card and draws, while their team guesses.
- 7) Alternate turns between the two teams, letting different students draw each time.
- 8) Continue the game until all the cards have been used. Keep track of points for each team.
- 9) At the end, count the points. The team with the most points is the winner of Name that Resource Pictionary!

Pictionary Cards

Cut out the cards below.

PREVIEW

Tree

River

Fish

Coal

Wind

Bison

Ocean Wave

Iron

Coffee

Corn

Oil

Glacier

Gold

Diamond

Waterfall

Barrel

Salt

Sun

Sand

Timber

Sheep

Lake

Silver

Gravel

Draw & Label

Draw 4 resources from the Pictionary activity and label each picture.

PREVIEW

Renewable Resources

Renewable Resources

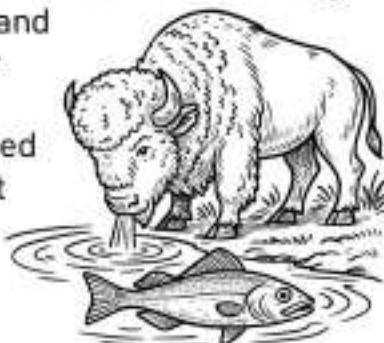
Renewable resources are natural materials or living things that can replace themselves within a short period of time. For example, crops like wheat are planted in the spring, harvested in the summer or fall, and then replanted the next year. Wheat is used for bread, pasta, and cereals, and farmers can usually grow the same amount again the following season as long as soil and water are available. This cycle makes crops an excellent example of renewable resources.

Trees

Trees are a renewable resource, but their growth time is very different from crops. We cut trees to use for wood, paper, and paper. A tree planted today may take decades—or even centuries—to grow large enough to replace the one cut down. For example:

- A **hardwood** tree like a maple can take 150–200 years to reach full size.
- A **pine tree** can take 5–40 years, depending on conditions like rainfall and soil quality.
- **Bamboo**, a fast-growing grass, can be harvested in only 7 years.

These different growth times show how careful planning is needed when using forests.


Managed Forests

In Ontario, about 90% of forests are on **Crown land**, which means they are owned by provincial or federal governments. Out of these forests, some are **managed forests**. A managed forest is not just about planting and cutting trees. It is about considering habitat, public use, and the voices of Aboriginal communities. It is about **stewardship**, where a new tree is planted for every tree cut. This ensures resources for future generations.

Wildlife

Wildlife can also be a renewable resource if protected properly. In the 1800s, there were nearly 30 million bison in North America. Indigenous peoples hunted bison for food, clothing, and shelter. When Europeans arrived, the use of guns and horses made hunting far more efficient, and the bison were nearly wiped out. **Reserves** and **conservation laws** eventually helped protect the species. A similar story happened with cod fish. In 1497, John Cabot described the waters of Newfoundland as so full of cod that they could be scooped with a basket. By 1992, due to overfishing, the cod fishery was shut down, and thousands of fishers lost their jobs.

Renewable resources must be carefully managed. Without sustainable practices, they risk becoming non-renewable.

Questions

Use information from the text to support your answer.

1) Why is bamboo more sustainable as a wood source than sugar maple trees?

2) Why is it important to have protection for wildlife?

True or False

Circle whether the statement is true or false.

1) Renewable resources will always be available for humans.

True False

2) About 90 percent of Ontario's forests are located on Crown land.

True False

3) Ontario has laws that protect forests on Crown land.

True False

4) All renewable resources can be replaced in a human lifetime.

True False

5) When well managed, renewable resources will always be available.

True False

6) A sustainable forest plants a new tree for every tree removed.

True False

Questioning

Write 3 questions you have about the reading.

1)	_____
2)	_____
3)	_____

Non-Renewable Resources

What Are Non-Renewable Resources?

Non-renewable resources are natural materials that take millions of years to form. They cannot be replaced in a human lifetime. The best examples are **fossil fuels** such as oil, natural gas, and coal. These fuels began as plants and animals that lived millions of years ago. When they died, their remains were buried and squeezed under the earth's surface. Over time, slimy plants and animals from oceans and lakes turned into oil, while woody plants turned into coal. Both types of matter can also create natural gas. Minerals, like copper and gold, are also non-renewable because they cannot reform quickly.

How Fossil Fuels Form

For fossil fuels to form, special conditions are needed:

- A specific environment, like a swamp, with little or no oxygen.
- A heavy weight of sediment or water pressing down.
- High heat from the earth's core.

Millions of years ago, trees and plants of the earth were covered with dense forests. Sea levels were lower, so these forests often flooded and turned into swamps. Dead plants and animals sank into the mud, where sediment covered them. Over time, more layers of sediment piled up. The heat and pressure from these layers, along with heat from deep underground, slowly changed the dead plants and animals into coal, oil, and gas.

Different Types of Fossil Fuels

Each fossil fuel has unique features and uses. Coal is black rock that burns easily and has powered factories and trains for centuries. Oil is a thick liquid that is refined into gasoline, diesel, and jet fuel, making it essential for transportation. Natural gas is a cleaner-burning fuel often used for heating homes and generating electricity. While they are all important, oil and gas provide most of the world's energy today.

Where Fossil Fuels Are Found

Fossil fuels are usually located underground, from about 10 metres to several kilometres below the surface. Oil and natural gas are often discovered near tectonic plate boundaries where earth movements trap the fuels. In Canada, Alberta is the largest producer of oil and gas, with huge deposits in the oil sands.

Why They Are a Problem

Humans are using fossil fuels far faster than they can ever reform. In 2019, about 84% of the world's total energy came from them. This shows our heavy dependence. When burned, these fuels release **greenhouse gases** that trap heat in the atmosphere. This causes global warming and extreme climate change. Burning them also creates **air pollution**, which leads to smog and respiratory diseases like asthma.

Visualization

What were you picturing while you were reading? Describe your picture.

A red arrow pointing upwards, indicating a positive trend or value.

Question 11: Use information from the text to support your answer.

1) How are fossils made?

2) Why are fossil fuels considered a problem for the environment?

True or False

Circle whether the statement is true or false.

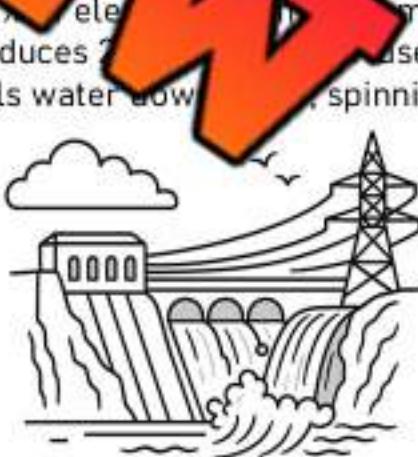
1) Oil is formed mainly from woody plants buried under pressure.	True	False
2) Fossil fuels can be replaced within a normal human lifetime.	True	False
3) About 84 percent of world energy came from fossil fuels in 2019.	True	False
4) Coal is a black rock that has been burned for centuries.	True	False
5) Minerals like copper and iron are considered renewable resources.	True	False
6) Ontario is the largest Canadian producer of oil and gas.	True	False

Flow Resources

What Are Flow Resources?

A **flow resource** is a natural resource that does not fit into the category of renewable or non-renewable. These resources must be used at the place and time they occur, because they cannot be stored for later use. There is an unlimited supply of flow resources, and they are not influenced by humans. Common examples are **sunshine, tides, wind, running water, and geothermal heat**. These resources will not be exhausted over time. This is not because they replace themselves, but because their sources are either massive, such as the sun, or ongoing processes in nature, such as rainfall, wind, and ocean tides.

Why Flow Resources Matter


Flow resources are important because they are clean and cause fewer harmful effects than fossil fuels. With no risk of running out, flow resources are sustainable. Unlike coal, oil, or gas, flow resources do not release large amounts of greenhouse gases that cause climate change. Many countries worldwide invest in flow resources because they are clean, renewable, and safe for long-term use.

Tidal Power in Canada

Another example of a flow-resource use is **tidal power**. Although Canada once had the Annapolis Tidal Plant, it was decommissioned in 2019. Much of the tidal energy effort is focused on the Bay of Fundy. At the Bay of Fundy Ocean Research Centre for Energy (FORCE) in Nova Scotia, several companies are developing tidal stream turbines in the Minas Passage. In 2025, the province launched a competitive call to select new projects totaling up to 13 megawatts at FORCE, enough to power about 10,000 homes.

Hydroelectricity in Action

Flow resources are part of everyday life. In Ontario, about 25% of electricity comes from the Niagara Falls Ontario Hydro plant. Niagara Falls also produces 25% of the electricity used in New York State. **Hydroelectricity** is made when gravity pulls water down a dam, spinning turbines that create energy. The greater the drop of water, the stronger the force, and the more energy is made.

Benefits and Problems of Hydroelectric Power

Hydroelectric power has many benefits:

- It is clean and does not pollute the air
- It is reliable and efficient
- It is cost effective and sustainable

However, there are challenges. Large hydro projects

use vast amounts of land and destroy plant and animal habitats. Ontario Hydro has a 750-acre reservoir at Niagara Falls to ensure steady water flow. In other countries, huge dams flood entire valleys. For example, when the **Three Gorges Dam** was built in China, 13 cities and over 1,000 villages were flooded, forcing 1.2 million people to move.

True or False

Circle whether the statement is true or false.

1) Flow resources are renewable resources.	True	False
2) Sunshine, wind, rain and running water are examples of flow resources.	True	False
3) There are no negative environmental impacts from using flow resources.	True	False
4) Humans can control flow resources.	True	False
5) We use over 80% fossil fuels for our energy needs because flow resources cannot provide enough power to meet our needs.	True	False

Questions

Use the following questions to check your comprehension from the text to support your answer.

1) Why is low reactivity an important source of energy?

2) What are some of the positive and negative impacts of hydroelectric power?

Summarize

Summarize the reading by writing the important information.

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

Circle Yes or No for each question.

1) Can flow resources be stored for future human use?	Yes
	No
2) Is sunshine an example of a common flow resource?	Yes
	No
3) Do flow resources create less pollution than fossil fuels?	Yes
	No
4) Do flow resources eventually run out from human use?	Yes
	No

Name: _____

Mark

Circle Yes or No for each question.

1) Can flow resources be stored for future human use?	Yes
	No
2) Is sunshine an example of a common flow resource?	Yes
	No
3) Do flow resources create less pollution than fossil fuels?	Yes
	No
4) Do flow resources eventually run out from human use?	Yes
	No

Name: _____

Mark

Circle Yes or No for each question.

1) Can flow resources be stored for future human use?	Yes
	No
2) Is sunshine an example of a common flow resource?	Yes
	No
3) Do flow resources create less pollution than fossil fuels?	Yes
	No
4) Do flow resources eventually run out from human use?	Yes
	No

Name: _____

Mark

Circle Yes or No for each question.

1) Can flow resources be stored for future human use?	Yes
	No
2) Is sunshine an example of a common flow resource?	Yes
	No
3) Do flow resources create less pollution than fossil fuels?	Yes
	No
4) Do flow resources eventually run out from human use?	Yes
	No

What Are The Most Valued Resources?

What are the Most Valued Resources?

Natural Resources are resources because people value them. Some resources are necessary to support life on our planet and some resources make our life easier.

Some of the most important resources on earth are:

Air	Air is necessary for life on our planet. Without access to clean air people become sick. Air pollution is a major threat to our environment.
Water	Water is a valuable resource needed by people, animals, and plants. Only 2.5% of Earth's water is renewable through the water cycle, but groundwater is being used faster than it is replaced.
Salt	Salt is a mineral necessary for life of people and animals.
Soil	Soil lets us grow food, drink water, and supports plants that take in carbon dioxide and release oxygen. It is a thin 1-2 metre layer around Earth and is at risk from pollution, erosion, and overuse.
Timber	Timber is used in construction, paper, and paper as well as for fuel. When forests are managed responsibly, timber is a renewable, sustainable and economical resource.
Oil	Oil is a non-renewable resource that comes from ancient plants over millions of years. It supplies over 40% of our energy needs. It is also used in making plastics. At the current rate of consumption, the world will run out of oil in 53 years.
Natural Gas	Natural Gas supplies 22% of our energy needs. It is also used in cooking and heating. At the current rate of consumption, the world will run out of natural gas in 60 years.
Coal	Coal is a fossil fuel for energy. The world may run out in 100 years. Burning it causes air pollution, while sludge and ash pollute groundwater.
Iron	Iron is the most used metal, making up 5% of Earth's crust. It is used for steel in buildings, pots, and pans. Most iron comes from Australia, Brazil, South Africa.
Bauxite	Bauxite is used to make aluminum. The largest Bauxite producing countries are Australia, China, Guinea and Brazil.
Helium	Helium is used as a cooling medium in MRI machines and satellite instruments. It is also used in making fiber optics and it is used to inflate airbags in vehicles.
Copper	Copper is used in pipes, wire and roofing as well as nutritional supplements. The largest producers are Chile, Peru, China and the USA. Copper can be recycled without any loss of quality, so recycled copper is as large a source of copper as newly mined copper.

True or False

Circle whether the statement is true (T) or false (F).

1) Coal burning creates ash and sludge that harms groundwater supplies.	T	F
2) Soil is only an important resource because of the minerals we mine from it.	T	F
3) Air, water and salt are all important because we need them to live.	T	F
4) Some resources that are renewable are mismanaged and could run out.	T	F
5) Drinking water is a plentiful resource that could run out because of pollution.	T	F

Questions _____ Use information from the text to support your answer.

1) What natural resources do you think are the most valuable? Why?

2) Why is water a natural resource? Is it renewable or non-renewable? Why do we need to be careful with water as a natural resource?

Word Search

Find the words in the wordsearch.

Air	Water
Salt	Soil
Timber	Oil
Coal	Iron
Bauxite	Helium
Copper	Gold

E	S	R	K	T	S	E	K	C	O	P	P	R	H	W	Q	D
N	Y	U	B	O	L	F	P	D	Q	V	P	B	C	D	O	R
I	U	Q	T	I	S	Y	M	K	U	H	F	J	N	G	E	E
T	U	B	L	T	L	E	C	E	T	I	X	U	A	B	I	B
H	J	D	A	L	I	C	C	Z	G	J	J	I	W	S	R	M
K	P	A	S	R	O	L	O	G	V	P	H	A	A	O	I	G
J	M	U	I	L	E	H	T	A	O	Y	O	J	T	I	N	T
G	C	D	D	J	X	T	Y	X	L	M	X	W	E	L	N	R
X	H	W	Q	C	C	A	X	K	C	Z	K	F	R	L	H	O
C	B	B	F	D	C	Q	D	L	Q	R	H	V	G	O	L	D

Blog Post: Canada's Natural Wealth

Top 5 Natural Resources That Shape Canada's Economy

Date: August 18, 2025

Author: Daniel R.

5-minute read

When you think about Canada, you might picture hockey, snow, or maple syrup. But did you know that Canada's economy depends heavily on its natural resources? From oil in Alberta to fish in the Atlantic, these resources create jobs, support trade, and impact daily life. Here are 5 important resources that shape Canada's economy.

- 1) **Oil in Alberta powers the nation.** Alberta's oil sands are the world's third-largest oil reserves, producing about 60% of Canada's crude oil. The oil industry supports over 140,000 jobs and millions in exports each year.
- 2) **Fresh water in Quebec is vital.** Quebec holds about 20% of the world's fresh water. Lakes Ontario and Huron supply drinking water to millions. Hydroelectric dams in Quebec also make the province the top producer of hydro power in Canada, exporting clean energy to the U.S.
- 3) **Timber in British Columbia is the backbone of the economy.** Forestry in B.C. provides over 50,000 jobs. Canada is one of the world's largest lumber exporters, with softwood used for houses, paper, and furniture. Responsible forest management helps balance jobs with sustainability.
- 4) **Fish in the Atlantic feed the economy.** For centuries, cod, lobster, and crab have supported communities in Newfoundland, Nova Scotia, and New Brunswick. Today, seafood exports bring in more than \$6 billion a year.
- 5) **Minerals in the North fuel technology.** Canada's North is rich in diamonds, nickel, and rare earth minerals. These resources are essential for electronics, batteries, and even renewable energy technology. Mining creates thousands of jobs in Yukon, Nunavut, and the Northwest Territories.

Comments:

Sophie T. – August 18, 2025

Canada's oil may create jobs, but it also produces huge greenhouse gas emissions. In 2019, oil and gas made up 26% of Canada's emissions. We should focus more on renewable energy instead.

[Like](#) [Reply](#) [1d ago](#)**Michael B. – August 19, 2025**

I disagree. Oil is still Canada's largest export, worth over \$100 billion in 2022. Without it, thousands would lose jobs, and Canada's trade balance would collapse. We can't replace oil overnight.

[Like](#) [Reply](#) [15m ago](#)

Questions Answer the questions below using evidence from the text.

1) How do natural resources shape Canada's identity around the world?

_____2) Why might renewable energy become more important for Canada's future?

_____3) What challenges do you think Alberta faces with oil exports?

Two Truths and a Lie

Check only the two truths in each row.

 Alberta's oil sands are the third-largest oil reserve worldwide. Canada provides about 80% of the world's crude oil. Quebec exports hydroelectric power mainly to the United States. Forests in British Columbia is mainly used for paper products. Cod, lobster, and salmon are vital to Atlantic fishing economy. The Northwest Territories are known for gold, diamonds, and nickel.

My Opinion

Do you believe Canada depends too much on its natural wealth? Explain.

Climate Change And Renewable Energy

The Problem of Climate Change

One of the biggest problems the world will face in the next century is **climate change**. This happens when the average temperature of the earth keeps rising. The earth is getting warmer because gases such as **carbon dioxide** are released into the air and gather in the atmosphere. These gases act like a blanket, trapping heat and making the planet warmer. Human activities such as making and using energy account for about 70% of all **greenhouse gas** emissions worldwide.

Effects of a Warming Planet

Climate change causes serious problems. **Storms, hurricanes, and heat waves** are becoming more common. Glaciers in places like the Arctic are melting quickly, causing sea levels to rise, which puts countries like the Netherlands at risk of flooding. Melting ice also mean there is less fresh water available for people. Without enough water, areas of the world face drought, crop failure, and food shortages.

Global Efforts to Act

Since the 1980s, the **United Nations (UN)** and many countries to create agreements to lower greenhouse gas emissions. Canada currently gets 18.9% of its total energy from renewable resources such as wind, water, and solar power. By 2018, most countries had renewable energy targets to increase the use of clean energy. Governments help meet these goals by giving incentives and subsidies. For example, businesses may get financial help for building wind turbines, installing solar panels, or switching lighting systems to energy-saving LED lights.

Types of Renewable Energy

Renewable energy plays an important role in reducing emissions. Different forms include:

- ✓ Solar power
- ✓ Wind energy
- ✓ Hydroelectric power
- ✓ Geothermal energy
- ✓ Ocean power
- ✓ Biomass energy

Hydroelectric Power in Canada

Hydroelectric energy is the largest renewable energy source in the world. In 2019, Canada was the second largest hydroelectric producer after China. Hydroelectricity does not release greenhouse gases, making it a clean source of energy. It is also reliable, since it can produce electricity 24 hours a day, unlike solar power which depends on sunlight. Hydroelectric plants are cost effective with low operating costs, and in Canada, they supply over 60% of the nation's electricity.

True or False Circle whether the statement is true or false.

1) Rising ocean levels put mountain countries most at flood risk.	True	False
2) Using renewable resources helps reduce climate change.	True	False
3) Around 70% of greenhouse gases come from how humans make energy.	True	False
4) Hydroelectricity is the only green renewable energy source.	True	False
5) Carbon dioxide in the atmosphere works like a blanket trapping heat.	True	False
6) Canada produces less than 5% of its energy from renewables.	True	False

Questions _____ Use information from the text to support your answer.

1) How does burning fossil fuels contribute to climate change?

2) How can melting glaciers change some regions?

3) Why is global cooperation important in fighting climate change?

Word Scramble

Unscramble the words from the word bank.

Word Bank

Drought	Carbon	Climate	Emission	Energy
Change	Atmosphere	Renewable	Greenhouse	Hydroelectric
YRRHTLCDCOEEI		ENLRBWEEA		
LITCEMA		ROHDTUG		
SEOMSNII		EHEOGUSREN		

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Is the statement true (T) or false (F)?

Mark

1) Carbon dioxide traps heat in Earth's atmosphere like blankets.	T
	F
2) Melting glaciers increase the fresh water supply worldwide.	T
	F
3) Canada ranks second in world hydroelectric production.	T
	F
4) Hydroelectric power depends only on sunlight during daytime.	T
	F
5) The Netherlands faces flood risks from rising ocean levels.	T
	F

Name: _____

Is the statement true (T) or false (F)?

Mark

1) Carbon dioxide traps heat in Earth's atmosphere like blankets.	T
	F
2) Melting glaciers increase the fresh water supply worldwide.	T
	F
3) Canada ranks second in world hydroelectric production.	T
	F
4) Hydroelectric power depends only on sunlight during daytime.	T
	F
5) The Netherlands faces flood risks from rising ocean levels.	T
	F

Name: _____

Is the statement true (T) or false (F)?

Mark

1) Carbon dioxide traps heat in Earth's atmosphere like blankets.	T
	F
2) Melting glaciers increase the fresh water supply worldwide.	T
	F
3) Canada ranks second in world hydroelectric production.	T
	F
4) Hydroelectric power depends only on sunlight during daytime.	T
	F
5) The Netherlands faces flood risks from rising ocean levels.	T
	F

Name: _____

Is the statement true (T) or false (F)?

Mark

1) Carbon dioxide traps heat in Earth's atmosphere like blankets.	T
	F
2) Melting glaciers increase the fresh water supply worldwide.	T
	F
3) Canada ranks second in world hydroelectric production.	T
	F
4) Hydroelectric power depends only on sunlight during daytime.	T
	F
5) The Netherlands faces flood risks from rising ocean levels.	T
	F

Ocean Power

What is Ocean Power?

Ocean power is a type of **flow resource**. This means it cannot be stored for later use but must be captured as it happens. Ocean power comes from the natural motion of **waves** and **tides**. Tides occur twice every day because of the moon's gravitational pull on Earth and the Earth spinning on its axis. Unlike some other energy sources, tides are predictable, which makes tidal energy a very reliable source of power.

How Tidal Power Works

Tidal power is possible in certain coastal areas where ocean water can be trapped in a reservoir. As the tide comes in, the water flows over turbines, causing them to spin and generate power. When the water is released back to the ocean, it again turns turbines to create power.

- The largest tidal power plant in South Korea, which produces electricity from incoming tides only.
- In France, a plant uses turbines to generate power both when tides flow in and out, producing enough power for 8,000 households each year.
- Canada has tried tidal power at the **Quebec Royal Generating Station** in Nova Scotia, which supplied power to about 400 homes at its peak but has been closed since 2019.

Environmental Studies

Scientists continue to study **tidal plants** to measure how they affect fish, shorelines, and ecosystems. This research also looks at how to make the systems more efficient.

Global Potential

Experts estimate that tidal and wave power together could provide up to 10% of the world's electricity needs if technology improves. Countries with long coastlines, like Canada, the UK, and Australia, have the greatest potential.

Wave Energy

Ocean power also comes from **waves**. Devices that float on the surface of the water or rest on the sea floor capture the up-and-down movement of waves to generate power. Portugal created the first and largest **wave farm**, which was meant to supply electricity for about 1,500 homes. However, after four months, mechanical problems forced the project to shut down.

Many companies are building new prototypes to improve wave power. Like wind and solar power, wave energy depends on weather conditions, which makes it less reliable. Another challenge is cost: the technology is still expensive to build and maintain, which slows down its widespread use.

True or False Circle whether the statement is true or false.

1) Ocean power is non-renewable energy.	True	False
2) Ocean power can be stored for later use after capture.	True	False
3) Tides are caused by the moon's pull and Earth's spin.	True	False
4) Ocean power can be created anywhere there is a shoreline.	True	False
5) The largest tidal plant in South Korea uses both tide directions.	True	False
6) Flow resources must be used at the moment they occur.	True	False

Question: _____ Use information from the text to support your answer.

1) Why is tidal power considered a flow resource?

2) Why is tidal energy considered reliable compared to other energy sources?

3) How can tidal energy and hydroelectric power be seen together?

Summarize

Summarize the reading by writing the important information.

Geothermal Energy

What is Geothermal Energy?

Geothermal energy is a type of **renewable energy** that comes from the natural heat stored inside the earth. The earth's core is as hot as the surface of the sun, and this heat rises upward through rock and water. The supply of heat is so large that using it does not reduce what is available. For thousands of years, people such as the Chinese, Romans, Greeks, and Indigenous North Americans used geothermal energy from hot springs for cooking and bathing.

Where is Geothermal Energy Found?

Geothermal energy is found everywhere, but it is easiest to use in certain areas. It is most accessible in tectonic plate boundaries where volcanoes and earthquakes occur. The **Pacific Ring of Fire**, which circles the Pacific Ocean, has many geothermal sites. In Iceland, where heat is close to the surface, about 90% of homes use geothermal heating, and 26% of the country's energy comes from this source.

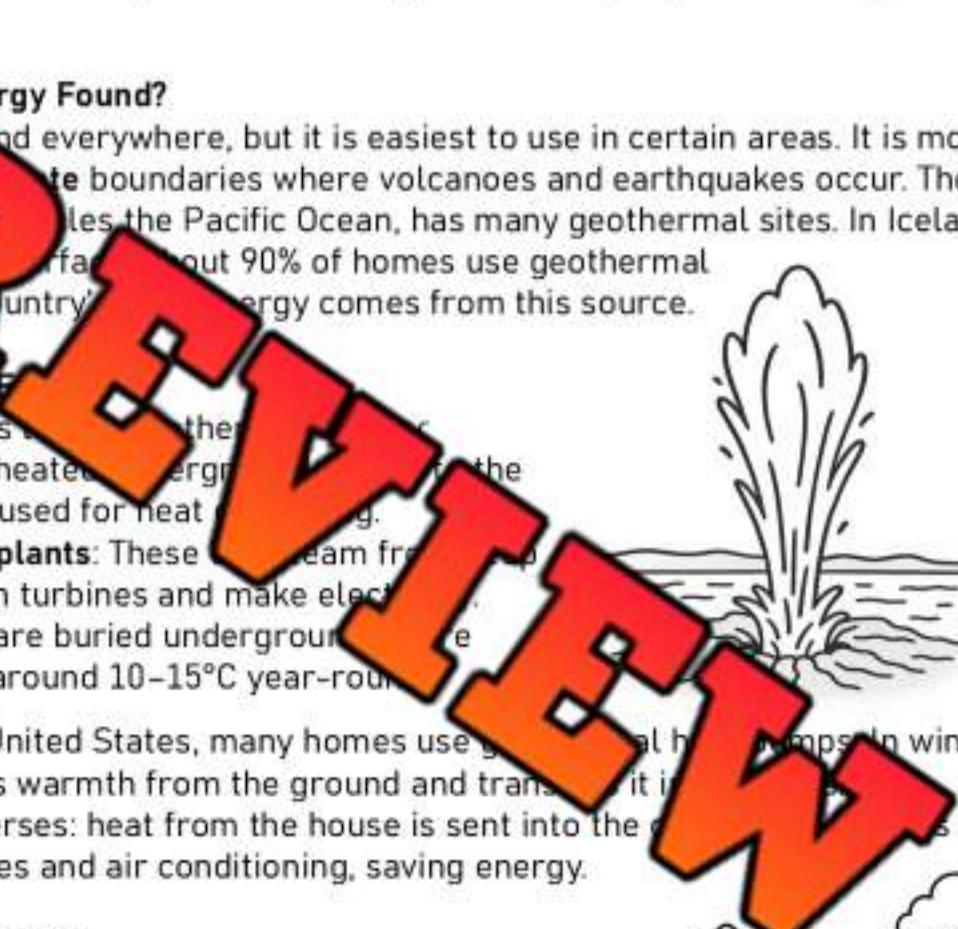
How We Use Geothermal Energy

There are three main ways we use geothermal energy:

- **Hot springs:** Water heated by energy from the earth rises to the surface and can be used for heating and cooling.
- **Geothermal power plants:** These use steam from the earth underground to spin turbines and make electricity.
- **Heat pumps:** Pipes are buried underground where the temperatures stay around 10–15°C year-round.

In Canada and the United States, many homes use geothermal heat pumps. In winter, liquid in the pipes absorbs warmth from the ground and transfers it into the house. In summer, the process reverses: heat from the house is sent into the ground. This reduces the use of furnaces and air conditioning, saving energy.

Advantages and Disadvantages


Geothermal energy is clean and sustainable, but it has challenges.

Advantages

- Does not run out
- Produces less pollution than fossil fuels
- Works all year round

Disadvantages

- Geothermal plants are expensive to build
- Underground water may bring up toxic chemicals like arsenic or mercury
- Some plants release greenhouse gases
- Large amounts of land are required

Questions

Use information from the text to support your answer.

1) What are 3 ways in which we get geothermal energy?

2) What are the disadvantages of geothermal energy plants?

3) Why do tectonic boundaries make geothermal energy easier to access?

True or False

Circle whether the statement is true or false.

1) Geothermal generating plants are renewable energy sources. They do not make greenhouse gases.	<input type="checkbox"/>	True	False
2) The Pacific Ring of Fire is an important geothermal energy source worldwide.	<input checked="" type="checkbox"/>	True	False
3) A hot spring is a geothermal energy source.	<input type="checkbox"/>	True	False
4) Geothermal energy is a new form of energy.	<input type="checkbox"/>	True	False
5) Geothermal energy is a sustainable source of energy.	<input type="checkbox"/>	True	False
6) Geothermal energy can only be used where volcanoes are found.	<input checked="" type="checkbox"/>	True	False

Fill in the Blanks

Fill in the blanks with the missing word.

- 1) The earth's _____ is as hot as the surface of the sun.
- 2) It is easiest to access geothermal energy near _____ boundaries.
- 3) About _____ percent of Iceland's homes are heated with geothermal energy.
- 4) Geothermal plants can sometimes release harmful _____ gases.
- 5) Hot underground water coming to the surface is called a hot _____.

Exit Cards

Cut Out Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

Multiple Choice: Circle the correct answer.

1) Geothermal energy is best described as...	2) Which area has many geothermal sites?
a) Energy from the sun's rays	a) Atlantic Coast
b) Heat stored deep inside the earth	b) Arctic Circle
c) Power made only by volcanoes	c) Pacific Ring of Fire
d) Gas collected under the ocean	d) Sahara Desert
3) What do geothermal power plants mainly use to make electricity?	4) Which is one advantage of geothermal energy?
a) Ocean tides	a) It never runs out
b) Underground steam	b) It produces no pollution
c) Strong winds	c) It is easy and cheap to build plants
d) River currents	d) It only works in summer

Name: _____

Mark

Multiple Choice: Circle the correct answer.

1) Geothermal energy is best described as...	2) Which area has many geothermal sites?
a) Energy from the sun's rays	a) Atlantic Coast
b) Heat stored deep inside the earth	b) Arctic Circle
c) Power made only by volcanoes	c) Pacific Ring of Fire
d) Gas collected under the ocean	d) Sahara Desert
3) What do geothermal power plants mainly use to make electricity?	4) Which is one advantage of geothermal energy?
a) Ocean tides	a) It never runs out
b) Underground steam	b) It produces no pollution
c) Strong winds	c) It is easy and cheap to build plants
d) River currents	d) It only works in summer

Debate: Fossil Fuels vs Renewable Energy

Objective**What are we learning about?**

Students will explore the benefits and challenges of fossil fuels and renewable energy in Canada. They will learn how oil and gas create jobs and money for the economy, but also how burning fossil fuels harms the environment and adds to climate change. Students will also discuss if renewable energy is cleaner and more sustainable. They will decide if Canada should keep using fossil fuels or switch fully to renewable energy.

Materials**What materials will you need for the activity?**

- Sentence starters
- Planning page
- Debate prompt

Instructions**How will you complete the activity?**

1) Read the debate question: **Should Canada keep using fossil fuels or switch to renewable energy?**

2) Talk as a class about why Canada uses fossil fuels (jobs, exports, energy) and what renewable energy offers (clean air, sustainability, long-term benefits).

3) Divide the class into 2 teams:

- **Team A:** Canada should keep using fossil fuels.
- **Team B:** Canada should switch fully to renewable energy.

4) Each team fills out their debate planning sheet.

5) Use sentence starters to help with ideas.

6) Sit in a circle and take turns sharing your side. Speak clearly and respectfully.

7) After the debate, students can draw or write what they learned.

Side	Description
Team A - Canada Should Keep Using Fossil Fuels	<p>Some people think Canada should continue using fossil fuels. Here's why:</p> <ul style="list-style-type: none"> • Oil and gas create thousands of jobs in Canada. • Fossil fuels bring in money from exports around the world. • Canada has huge oil and gas reserves that are valuable. • Communities depend on oil and gas for their economy. • Switching quickly could raise energy costs for families. • Renewable energy projects also require fossil fuels to build at first. • Oil and gas are 24-hour sources of energy day and night. • Canada's economy would suffer if we stop selling oil. • New technology can make oil cleaner to use. • Other countries will keep using oil, so Canada should too.
Team B - Canada Should Switch Fully to Renewable Energy	<p>Some people think Canada should move to a whole new energy system. Here's why:</p> <ul style="list-style-type: none"> • Burning fossil fuels causes climate change and air pollution. • Renewable energy sources like wind and solar never run out. • Renewables are cleaner and better for people's health. • Canada has strong potential for hydro, wind, and solar power. • Switching creates new jobs in renewable energy industries. • Fossil fuels will eventually run out, renewables are sustainable. • Using renewables helps Canada meet climate change targets. • Renewable energy reduces dependence on oil and gas markets. • Renewable energy protects wildlife and natural habitats from oil spills. • Future generations will benefit from cleaner air and stable energy.

Brainstorming Should Canada keep using fossil fuels, or switch fully to renewable energy?

Use this page to help you think about both sides of the issue.

1) Why do some people think Canada should keep using fossil fuels?

- _____
- _____
- _____
- _____

2) Why do some people think Canada should switch fully to renewable energy?

- _____
- _____
- _____
- _____

3) What are some differences between people that have?

We should keep fossil fuels. We should switch to renewables

4) What is your opinion?

- _____
- _____
- _____
- _____
- _____
- _____
- _____
- _____
- _____
- _____

Planning

Answer the questions below.

1) Do you think Canada should keep using fossil fuels or switch fully to renewable energy? Explain why.

2) What supports your opinion?

-
-
-
-
-

3) What might the other side say?

-
-
-
-
-
-

4) What facts or examples make your opinion stronger?

-
-
-
-
-
-
-
-
-
-

Sentence Starters

Use the sentence starters to help get you thinking.

1	I believe that...
2	In my opinion...
3	I think that...
4	From my point of view...
5	My personal view is...
6	It seems to me that...
7	I feel strongly that...
8	To me, it looks like...
9	I am convinced that...
10	Based on what I know...
11	After considering the situation...
12	Listening to others, I realize...
13	When I think about it more...
14	Reflecting on this, I understand...
15	Given the circumstances...

PREVIEW

Disagreeing

Use these sentence starters when you disagree with a classmate.

- 1 I see what you're saying, but I think...
- 2 That's an interesting point, however...
- 3 I understand your perspective, but I feel...
- 4 I'm not sure I agree with you because...
- 5 From my experience, I've found that...
- 6 Can I offer a different view? What if...
- 7 I respect your opinion, but I have a different thought...
- 8 It's good you brought that up. We should consider...
- 9 I see it differently because...
- 10 That's one way to look at it, but what about...
- 11 I appreciate your point, but I think...
- 12 Let's look at it from another angle...
- 13 That makes sense, but I read that...
- 14 I hear what you're saying, but my view is...
- 15 I'm not convinced because...

Draw

Draw your idea that shows your opinion on this debate. What would Canada look like if your side was true? Add details to show how keeping fossil fuels or switching fully to renewable energy would help or hurt the country. Think about jobs, the environment, money, health, or the future.

PREVIEW

Story: Life Beside A Giant Dam

Draw

Draw pictures to illustrate the story.

The Johnson family lived along a northern river in Manitoba. Their Cree community had hunted moose, fished, and gathered berries there for centuries. The land was more than just home. It held the graves of their grandparents and the stories of their people.

PREVIEW

One day, workers arrived with machines. The government had approved a hydroelectric dam on the river. Canada is the second-largest producer of hydroelectricity in the world, after China. In Manitoba, almost 97% of electricity comes from hydro dams. To make this power, huge dams flood wide areas of land.

The Johnsons were told they must leave. The new dam would flood 1,000 square kilometres of forest, including their traplines and cabins. Similar projects have displaced thousands of Indigenous people in Canada. When the Wuskwatim Dam was built in 2012, more than 200 square kilometres of land were flooded.

PREVIEW

Mary Johnson cried as she packed her family's belongings. She worried about the animals. Beavers, muskrats, and ducks would lose their wetlands. Scientists say hydro dams can destroy fish habitat, especially for species like lake sturgeon, which are already at risk.

Her son David tried to look at the other side. The dam would create jobs. Building one dam can employ hundreds of workers for several years. Once finished, it would provide electricity for over 100,000 homes. Hydroelectricity is also clean energy because it does not release greenhouse gases like coal or oil.

PREVIEW

Still, the loss was heavy. The family's new house was in town, far from the forest. They no longer had easy access to traditional foods. Studies show that when Indigenous communities are relocated, hunting and fishing often decline, and people must rely more on store-bought food.

Years later, the Johnsons visited the dam. The wall of concrete rose higher than a 20-storey building. The water behind it stretched like a giant lake. Tour guides explained how turbines spun to make electricity. David listened, but he thought about the moose trails now deep underwater.

The story of the Johnson family shows both sides of hydro power. It can bring jobs and renewable electricity. But it can also mean lost homes, lost culture, and lost habitat. For Indigenous families like the Johnsons, the true cost is measured in more than money.

Miniature Model: Renewable Energy Models

Objective**What are we learning about?**

Students will work in groups to build models of renewable energy sources. They will explore how solar, wind, hydro, geothermal, biomass, and tidal power work, and explain their benefits, challenges, and importance in helping Canada reduce fossil fuel use and support sustainability.

Materials What materials will you need for the activity?

- Cardboard, paper, tape, or glue
- Scissors, markers, and pens
- Simple household items (such as spoons, plastic bottles, fans, jars)
- Reference cards or diagrams of renewable energy types

Instructions How will you complete the activity?

1) Divide the class into groups. Each group will get one renewable energy type to research.

2) Read or look at a reference card to learn about your group's energy source.

3) Make a plan for your model and list what materials you will need.

4) Use the materials to build the model of your renewable energy type.

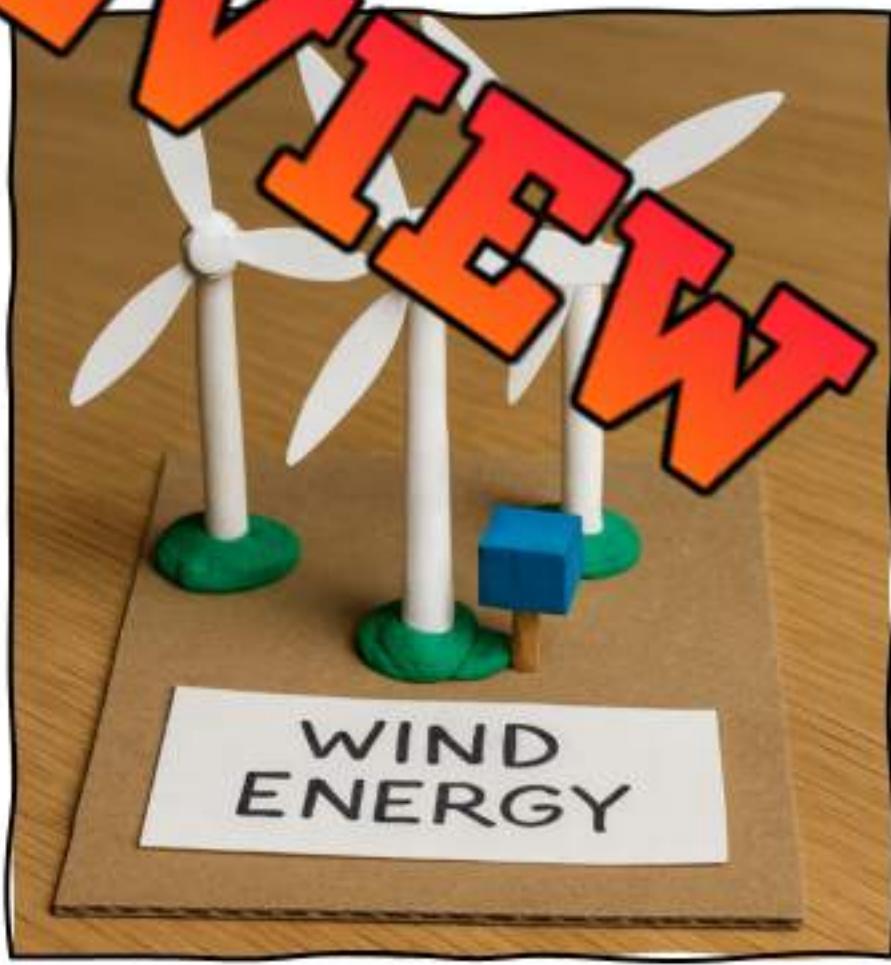
5) Add details like arrows, colours, or moving parts to make it clear.

6) Write a short label that explains what your model shows.

7) Present your model to the class and explain how the energy works.

8) All finished models will be displayed together in a "Renewable Energy Gallery."

Criteria


Use the criteria below to complete the activity.

Criteria	Description
Creative Use of Materials	The student built their renewable energy model in a creative and thoughtful way.
Explains the Energy Source	The student explained how their renewable energy source works and why it matters.
Matches the Energy Source	The model clearly shows the parts and features of the energy source.
Good Use of Tools and Materials	The student used paper, cardboard, and other tools carefully and with purpose.
Added Detail	The student included extra parts like labels, arrows, or moving parts that improved the model.

Example Model

Wind Energy Model of Renewable Power

Wind Energy Model of Renewable Power

Assign

Renewable Energy Models

	Energy	Description	Model Ideas
1	Solar Energy	Uses sunlight to create electricity or heat. Solar panels turn sunlight into usable power.	Build a pizza-box solar model using foil for reflection, black paper for heat absorption, and plastic wrap to show how sunlight is captured.
2	Wind Energy	Uses moving air to turn blades and generate electricity. Works best in open areas.	Create a paper pinwheel taped to a straw, then attach it to cardboard to represent how wind spins turbine blades in real life.
3	Hydro Energy	Uses moving water to spin blades and generate electricity. Rivers and waterfalls are often used.	Make a small water wheel from spoons and a bottle cap, attach to cardboard, and show how moving water can turn the wheel.
4	Geothermal Energy	Uses heat from inside the Earth to warm buildings or create electricity. Works best near volcanoes or hot springs.	Build a cardboard model diagram using straws for underground pipes, and hot water flowing up from cooler water flowing downward into the earth.
5	Biomass Energy	Uses organic waste like plants, wood, or food scraps to create heat or fuel.	Build a jar model of paper cut-outs and arrows, showing food or plant waste transforming step by step into energy through decomposition.
6	Tidal Energy	Uses ocean tides moving in and out to spin turbines and produce electricity.	Construct a small cardboard turbine placed in a shallow tray of water, moving it back and forth to represent the action of changing tides.
7	Wave Energy	Uses the motion of ocean surface waves to move devices and generate power.	Build a floating plastic device attached to a stick in a tub, then move water to show how waves push and lift the model.

Model Building Checklist

Check each box when your group finishes that step.

Check	Step	Description
<input type="checkbox"/>	Learn About Your Energy Source	We read or looked at pictures to learn how our renewable energy source works.
<input type="checkbox"/>	Make a Plan	We planned how we would build our model and what parts to include.
<input type="checkbox"/>	Pick Your Materials	We chose cardboard, paper, straws, spoons, jars, plastic bottles or other tools we needed.
<input type="checkbox"/>	Build the Model	We shaped or built our renewable energy model using the materials we picked.
<input type="checkbox"/>	Add Extra Details	We added extra parts like arrows, colours, labels, or drawings to improve it.
<input type="checkbox"/>	Label the Model	We made a label for our model so others could understand it.
<input type="checkbox"/>	Work as a Team	We helped each other and made sure everyone had a job.
<input type="checkbox"/>	Check Your Work	We looked at the model, a plan, or a drawing to see anything needed to be improved.

Group Roles

Decide what each group member will do for this activity.

Student's Name	Task

Planning

Answer the questions below.

1) The name of your assigned renewable energy source...

2) What are the benefits and challenges of this renewable energy source?

3) Plan your materials: What materials will you use to build your model?

4) Pick your materials: What materials will you use?

5) Add details: What small or extra parts will you include to make your model better?

PREVIEW

Sketch Your
Model

Draw your renewable energy model. Show the main parts and add labels so others can understand how it works.

PREVIEW

Self-Assessment Checklist

Building our renewable energy model

1) What was your group's renewable energy source?		
2) Did I help my group understand how this energy source works?	Yes	No
3) Did I look at pictures or examples of the energy source?	Yes	No
4) Did I help plan how we would build our model?	Yes	No
5) Did I help gather the materials we needed?	Yes	No
6) Did I help build the renewable energy model?	Yes	No
7) Did I share my ideas about what to add to the model?	Yes	No
8) Did I listen to the ideas of my group members?	Yes	No
9) Strengths: What was my part or role in the model?		

10) Areas for Improvement: What could I do better next time?

PREVIEW

11) How do I feel about our model?

Amazing	Great	Good	Okay	Poor
---------	-------	------	------	------

Rubric

How did you do on the activity?

Criteria	1 Point	2 Points	3 Points	4 Points
Creative Use of Materials	Model is unclear or missing key parts.	Model shows a little of the energy source.	Model mostly shows the energy source clearly.	Model clearly and creatively shows the full energy source.
Explains the Energy Source	No explanation is given.	Some explanation is given.	Explanation is mostly clear and makes sense.	Explanation is strong, clear, and easy to understand.
Matches the Energy Source	Model does not match the real source.	Some parts match the real source.	Most parts match the real source.	Model matches the real source well, with many features.
Good Use of Tools and Materials	Materials not used well or not finished.	Materials used with some effort.	Most materials used carefully and with thought.	All materials used very well to make the model great.
Added Details	Few or no extra details are included.	Some details added.	Many details are added to improve the model.	Model includes great, thoughtful extras like arrows, moving parts, or labels.

Teacher Comments

Mark

Student Comments – What Could You Do Better?

Overfishing

What Is Overfishing?

Overfishing happens when fish are caught faster than they can reproduce. Coastal communities have depended on fish as a main food source for thousands of years. In the past, fishing methods such as spears, hooks and lines, and throw nets were **sustainable** because they allowed fish populations to recover. As human populations grew, the demand for fish increased. Fish became a major industry because they were an important source of protein. People also learned to preserve fish for long periods by drying, salting, or pickling.

Fish as a Shared Resource

Unlike land resources, which have clear ownership, ocean fish are different. Fish swim across international boundaries, depending on water temperature, food, and predators. Because of this, they are known as **common pool resources**—they belong to no one, yet everyone can use them. In earlier times, ships could travel freely to wherever fish were found and catch as much as they wanted.

The Grand Banks and Cod

From the 1500s until the 1900s, ships from countries such as Russia and Japan fished on the Grand Banks off Newfoundland. The banks were once one of the richest fishing areas in the world. New technology, like large trawlers and nets, allowed fishers to catch in 15 years what had once taken over 100 years. By 1980, about 70% of the world's **fish stocks** were already being overfished.

International Agreements and Canadian Response

The **United Nations Convention of the Law of the Sea** was signed in 1982, giving each country control over natural resources within 200 nautical miles of the coastline. This stopped foreign fleets from fishing on the Grand Banks. However, Canadian fishers increased their catches. By 1992, the North Atlantic cod population had dropped to less than 10% of its original size. That year, the Canadian government declared a **moratorium**, or pause, on cod fishing. Even though cod stock have not returned to previous levels, in 2024 Canada ended the moratorium and is allowing cod fishing with strict quotas on the catch.

The Shift to New Fisheries

Cod was once the backbone of Atlantic Canadian fisheries, but today other species provide similar revenue. The most valuable are:

- Lobster
- Snow crab
- Shrimp

UN Treaty Status: Ratified (dark grey) / Signed but Not Ratified (medium grey) / Not Signed (light grey)

These shellfish now make up most of the income once earned from cod, though the collapse of the cod fishery caused tens of thousands of job losses in 1992.

True or False

Circle whether the statement is true (T) or false (F)

1) Fish are a renewable resource that will always be available.	True	False
2) Thirty percent of the world's fish stocks are being overfished which will lead to fish populations becoming extinct.	True	False
3) Fishing boats only fish off the shorelines of their own country.	True	False
4) Lobster, snow crab and shrimp have replaced the cod fisheries in Atlantic Canada.	True	False
5) When a ban was placed on cod fishing on the Grand Banks, the cod fish numbers returned to their former numbers after 15 years.	True	False

Question: Use _____ from the text to support your answer.

1) What is overfishing?

2) Why are ocean fish called common property resources?

3) What is the United Nations Convention of the Law of the Sea?

Questioning

Write at least two questions you have after reading the text.

1)

1)	_____
----	-------

2)

2)	_____
----	-------

Exit Cards

Cut Out Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

Draw a line from each word to its correct meaning.

Common Pool Resource

Catching fish faster than they can reproduce

Overfishing

A government pause or stop on fishing activities

Sustainable Fishing

A resource shared by everyone but owned by no one

Moratorium

Fishing methods that allow fish populations to recover

Name: _____

Mark

Draw a line from each word to its correct meaning.

Common Pool Resource

Catching fish faster than they can reproduce

Overfishing

A government pause or stop on fishing activities

Sustainable Fishing

A resource shared by everyone but owned by no one

Moratorium

Fishing methods that allow fish populations to recover

Name: _____

Mark

Draw a line from each word to its correct meaning.

Common Pool Resource

Catching fish faster than they can reproduce

Overfishing

A government pause or stop on fishing activities

Sustainable Fishing

A resource shared by everyone but owned by no one

Moratorium

Fishing methods that allow fish populations to recover

Name: _____

Mark

Draw a line from each word to its correct meaning.

Common Pool Resource

Catching fish faster than they can reproduce

Overfishing

A government pause or stop on fishing activities

Sustainable Fishing

A resource shared by everyone but owned by no one

Moratorium

Fishing methods that allow fish populations to recover

Newspaper Article: Fishery Shutdown

Newfoundland Cod Fishery Collapse Forces Shutdown

Published: July 2, 1992

This morning the Government of Canada announced a complete shutdown of the Atlantic cod fishery, ending a tradition that has lasted for centuries. The decision comes as a scientist warned that northern cod stocks had fallen to less than 10% of their original size. Federal Fisheries Minister John Crosbie said the shutdown would last at least two years, and that he hoped that recovery could take more than a decade.

The Grand Banks off Newfoundland were once the richest fishing grounds in the world. When explorer John Cabot arrived in 1497, he wrote that cod were so plentiful they could be scooped from the sea with baskets. For hundreds of years, cod was central to the diet and economy of Newfoundland and Labrador. By the 1980s, however, massive trawlers with advanced sonar and huge nets began to take in record catches. In 1968, landings peaked at 810,000 tonnes, but by 1992 the catch had dropped to just 38,000 tonnes.


Today's announcement puts more than 30,000 people out of work overnight, making it the largest single layoff in Canadian history. Entire towns that depended on cod are now facing an uncertain future.

Dr. Leslie Harris, a fisheries scientist, explained:

“The cod did not simply disappear by accident. Decades of overfishing removed too many breeding fish. Without them, the stock cannot replace itself fast enough to recover.”

In the small community of Petty Harbour, lifelong fisherman Patrick O'Neill described the shock of pulling up empty nets:

“For years, cod was our bread and butter. Then one summer the fish were just gone. We had nothing left to catch, and no way to a living.”

Officials hope that with the moratorium, cod populations will rebound. But with the loss of a resource that supported Newfoundland for almost 500 years, the social and economic costs are already severe.

True or False Circle whether the statement is true or false.

1) Cod stocks in 1992 fell to more than half original size.	T	F
2) John Cabot in 1497 described cod as easy to catch with baskets.	T	F
3) By 1968, cod landings on the Grand Banks reached 810,000 tonnes.	T	F
4) Cod landings peaked in 1992 at more than 800,000 tonnes.	T	F
5) Dr. Leslie Harris blamed ocean temperature for the cod collapse.	T	F
6) Fewer than 10,000 people lost work when the moratorium was declared.	T	F

Questions: Circle the letter of the question from the text to support your answer.

1) Why was cod so important to Newfoundland's economy and history?

2) How did large trawlers change the way Newfoundland was fished?

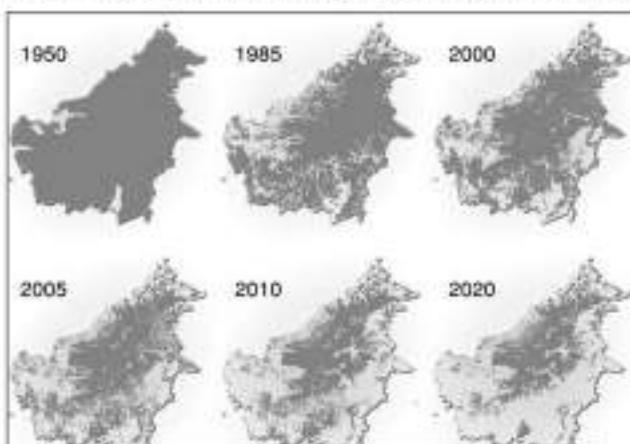
Diary Entry

Write a diary entry as a fisherman on July 2, 1992.

Deforestation

Deforestation

Deforestation is when trees in a forest are cut down, so that humans can use the land for other activities. Deforestation has led to the loss of 10 million square kilometers of tropical rainforest leaving just 6 million square kilometers of rainforests. Forests are an important resource. They provide habitat for wildlife and the plants in the forests provide important ingredients for medicine. Trees are important in the battle against climate change. Trees absorb carbon dioxide in their roots and leaves and give off oxygen. Trees cool the earth providing shade. When trees are cut down the carbon dioxide stored in the roots, decaying leaves and branches is given off, adding to greenhouse gases. If the trees are burned, more carbon dioxide from the plants are released into the air. A tree that has been cut down is a significant source of carbon dioxide.


Trees in a forest play an important role in water management. When heavy rains fall, trees catch some of the falling rain and let it drip gently to the ground while some evaporates from the trees. The trees hold the water and reduce erosion and flooding. Trees let off water vapour, which increases the amount of rainfall.

In South America acre after acre of rainforest is cut down in order to raise cattle or to grow soybeans and coffee beans. Once a forest is cleared, the temperature of the soil rises causing drought like conditions. Even, after only a few years, the land that has been cleared for grazing has been converted with grass that is being able to grow in the hot and dusty earth and farmers must clear additional land to graze their cattle.

In Malaysia, rainforests are being cut down to grow palm oil. Another cause of deforestation is climate change. **Climate change** is caused in part by the rising temperatures that cause more wildfires that are more severe. One cause of deforestation is the result of wildfires.

What can be Done About Deforestation?

There are several things we can do about deforestation including:

- Eat less meat- if there is less demand for beef, less grazing land will be needed.
- Plant a tree
- Boycott products that have palm oil- Palm Oil plantations are replacing rainforests. If there is less demand for the product there will be less plantations needed.
- Go paperless as much as possible. Don't print pages needlessly.
- Reduce, reuse and recycle.
- Choose wooden items made from bamboo rather than less sustainable types of wood.

True or False Circle whether the statement is true (T) or false (F).

1) Trees lower earth's temperature mainly by storing oxygen underground.	T	F
2) Cutting down rainforests leads to some animals becoming extinct because they have lost their habitat.	T	F
3) Eating less meat helps prevent deforestation.	T	F
4) When trees are burned, greenhouse gases are reduced in the atmosphere.	T	F
5) Malaysian rainforests are often cut down for palm oil farming.	T	F
6) About a third of all deforestation comes from wildfires caused by heat.	T	F

Question: Use the information from the text to support your answer.

1) What is deforestation? What are the problems caused by it?

2) Should Canadians have any say about what people in South America or Malaysia do with their land? Why or Why not?

Inferencing

What do you think might be the best solutions to deforestation?

Exit Cards

Cut Out

Cut out the exit cards below and have students complete them at the end of class.

Name: _____

Mark

List four harms caused by
deforestation.

1	
2	
3	
4	

PREVIEW

Name: _____

Mark

List four harms caused by
deforestation.

1	
2	
3	
4	

Name: _____

Mark

List four harms caused by
deforestation.

1	
2	
3	
4	

Name: _____

Mark

List four harms caused by
deforestation.

1	
2	
3	
4	

Name: _____

Mark

List four harms caused by
deforestation.

1	
2	
3	
4	

Name: _____

Mark

List four harms caused by
deforestation.

1	
2	
3	
4	

Fact or Fiction: Environmental Impacts

Objective**What are we learning about?**

To help students learn about environmental impacts through true or false statements on deforestation, desertification, overfishing, pollution, smog, acid rain, and climate change.

After each statement, students discuss how these impacts affect people and the environment.

Materials What else do you need for the activity?

- Fact or Fiction statements
- A 'Fact' sign and a 'Fiction' sign to place on either side of the room
- Designated areas in the classroom to move to, including 'Fact' and 'Fiction' signs, allowing space for students to move to either side

Instructions**How will you complete the activity?**

1. Your teacher will read statements. Pay close attention as each statement is shared.
2. Consider carefully whether you think the statement is true or false.
3. If you decide the statement is true, walk to the 'Fact' side of the room.
4. If your guess is that it's not true, move to the 'Fiction' side of the room.
5. Stay on your chosen side and listen attentively for the correct answer to be revealed.
6. When the right answer is announced, return to your seat, ready for the next round.
7. Have fun getting up and moving!

Fact or Fiction

Read the statements to the class.

#	Statement	
1	Overfishing never affects species like sharks or dolphins in the ocean.	Fiction
2	Desertification is completely natural and has no link to human actions.	Fiction
3	Smog in one country can drift across borders and harm neighbours.	Fact
4	Climate change has slowed down glacier melting in the last century.	Fiction
5	More climate change ocean currents that control world weather.	Fact
6	Acid rain only harms metal objects but never harms forests.	Fiction
7	Overfishing in ocean countries raises seafood prices worldwide.	Fact
8	Wildfires never release greenhouse gases into the atmosphere.	Fiction
9	Rising seas from climate change may drown island nations.	Fact
10	Deforested land always heals itself back to forest within a decade.	Fiction
11	Smog can block sunlight, sometimes lowering temperatures.	Fact
12	Air pollution from cars has no effect on children's health.	Fiction
13	Desertification in Africa has forced millions of people to migrate.	Fact
14	Melting Arctic ice has no influence on shipping routes or trade.	Fiction
15	Overfishing can make jellyfish populations explode in certain seas.	Fact
16	Acid rain is harmless to buildings made of stone and marble.	Fiction
17	Climate change is linked to more powerful hurricanes and cyclones.	Fact
18	Deforestation lowers rainfall, sometimes turning wet areas into dry zones.	Fact
19	Desertification improves farmland by adding more nutrients into the soil.	Fiction
20	Smog can mix with fog, creating deadly air called "smog fog."	Fact

PREVIEW

Quiz
Check-In

This quiz will assess students' understanding of the concepts covered in the Fact or Fiction activity. Cut along the lines and give each section to a student.

Name: _____

Mark

Is the statement true (T) or false (F)?

1) Overfishing in one ocean can influence seafood markets across continents.	T	F
2) Smog created in one country can travel and harm neighbouring nations.	T	F
3) Climate change has slowed glacier melting compared to past centuries.	T	F
4) Air pollution from cars has no measurable effect on children's health.	T	F
5) Rising seas linked to climate change may submerge entire island nations.	T	F
6) Acid rain is harmless to forests but can damage metal objects.	T	F

Name: _____

Mark

Is the statement true (T) or false (F)?

1) Overfishing in one ocean can influence seafood markets across continents.	T	F
2) Smog created in one country can travel and harm neighbouring nations.	T	F
3) Climate change has slowed glacier melting compared to past centuries.	T	F
4) Air pollution from cars has no measurable effect on children's health.	T	F
5) Rising seas linked to climate change may submerge entire island nations.	T	F
6) Acid rain is harmless to forests but can damage metal objects.	T	F

Name: _____

Mark

Is the statement true (T) or false (F)?

1) Overfishing in one ocean can influence seafood markets across continents.	T	F
2) Smog created in one country can travel and harm neighbouring nations.	T	F
3) Climate change has slowed glacier melting compared to past centuries.	T	F
4) Air pollution from cars has no measurable effect on children's health.	T	F
5) Rising seas linked to climate change may submerge entire island nations.	T	F
6) Acid rain is harmless to forests but can damage metal objects.	T	F

Natural Resources Ethical Use

Natural Resources and Fairness

Every country has **natural resources** such as forests, minerals, and water. People rely on these resources for survival and for their economy. Sometimes when valuable resources are discovered, the local people are harmed. They may be forced to leave their homes, lose their land, or not receive any benefits from the development. This unfair treatment often happens to Indigenous peoples who for centuries lived on the land for thousands of years.

The Maori and Land

The Maori were the first people to live in New Zealand around 1300. By the 1850s, European settlers had taken over much of the land. For the Maori, protecting the land is part of respecting their ancestors. They believe living forests, forests, and animals ensures resources will still exist for future generations. This traditional knowledge is now seen as very valuable. Many Indigenous groups, including the Maori, oppose large outside projects like mining, oil drilling, or dam construction that could destroy natural land and sacred spaces.

Indigenous Leadership in Conservation

Indigenous people make up only 5% of the world's population, but legally own about 18% of the land. Their efforts are shown here:

- **In South America**, Indigenous-controlled land has deforestation rates 2-3 times lower than other areas.
- **In Kenya**, Indigenous groups started wildlife conservation and tourism projects. These projects protect animals and provide jobs, balancing losses from farming or herding.
- **In Canada**, a forest east of Winnipeg was returned to First Nations. This step protected wildlife habitat and reduced uncontrolled logging.
- **In Australia**, Aboriginal communities manage land through **fire-stick farming**, using controlled burns to reduce wildfires and encourage plant growth, protecting biodiversity and reducing carbon emissions.

These examples prove that Indigenous stewardship can protect the environment while also supporting community economies.

Global Recognition of Indigenous Rights

Governments worldwide are slowly recognizing the importance of Indigenous stewardship. The **United Nations Declaration on the Rights of Indigenous Peoples (UNDRIP)** confirms that Indigenous peoples have the right to manage their own land and resources. This recognition connects cultural values with environmental protection, showing that traditional practices are crucial for global sustainability and fighting climate change.

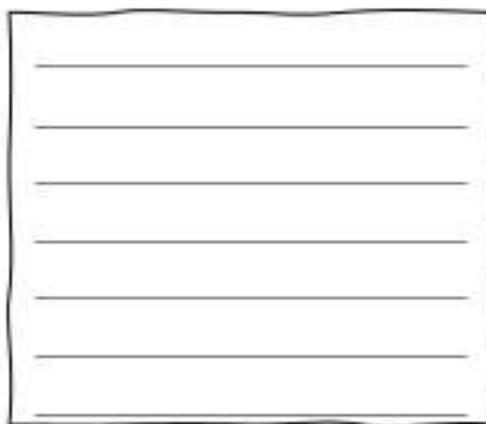
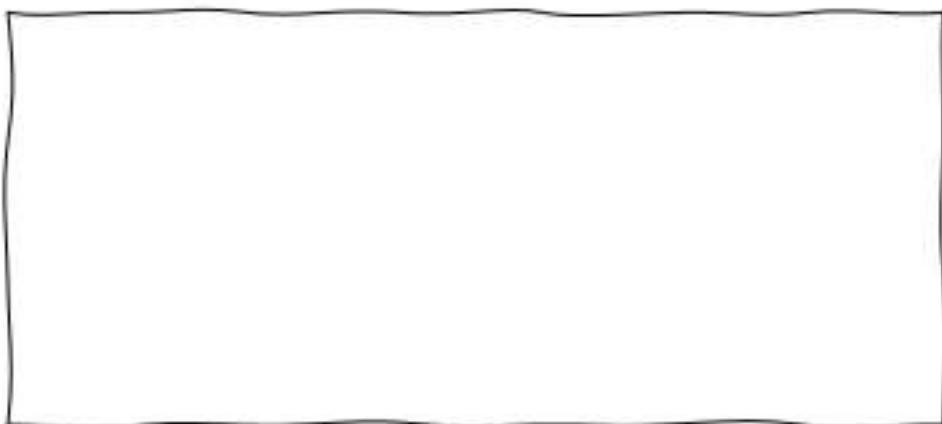
Questions

Use information from the text to support your answer.

1) Give 3 examples of indigenous people protecting the natural environment?

2) Do you think indigenous people should be paid for land that was taken from them over a hundred years ago?

Two Truths and a Lie



Read each group of statements. Checkmark the true ones. Mark X the one lie.

Indigenous peoples own about one-fifth of the world's land today.
Indigenous ownership of land has no effect on the environment.
Indigenous peoples' values support development.

Indigenous peoples protect forests, animals, and their traditions.
Protecting land and natural resources for future generations.
South America has higher deforestation rates than Africa.

Design a Poster

Design a poster about protecting nature and explain your message.

The Tragedy Of The Commons

The Tragedy of the Commons

The Tragedy of the Commons is an article written by Garrett Hardin, who describes a field in a village square that is not owned by one person and on which local people can bring their cows to graze for free. At first everyone brings one cow to the field, but eventually, the users realize they will get more benefit if they bring additional animals to graze for free. If more animals are brought to the field, the grass will not recover fast enough to continue to support all the cows, and the field will be ruined. The users choose to bring extra cows, because they benefit more personally from having more cows grazing today. They know that they do not control others who can also add additional cows. In the end the people do not care, and soon have nowhere for their cows to graze because the field no longer exists. This highlights the problem that when no one owns a resource, there is no one who will protect it.

Overfishing is another excellent example of the Tragedy of the Commons. No one owns the fish in the ocean, so many commercial fisheries takes as much as they can, because if they don't take them, another country will. Because of this attitude the cod fisheries on the Grand Banks were overfished and the bluefin tuna is in danger of extinction.

Solutions to the Tragedy of the Commons

Private Ownership - when people own something, they want to preserve and maintain it and they act to protect it, but the benefit of the resource only goes to the private owner.

Government ownership - when governments take ownership, they can regulate the use of the resource and make rules to protect it. Sometimes governments are less efficient than private owners so, prices for goods made with the resource may be more expensive.

Co-operation between users - Elinor Ostrom was the first woman to win a Nobel prize in Economic Sciences. She believed that people could work together to share a resource if they had some rules for:

- how the resource could be shared
- how to resolve disagreements
- how to monitor whether people were following the rules
- what the consequences would be if they did not follow the agreed upon rules

The United Nations is an example of a group that helps make rules for how we share resources in the world.

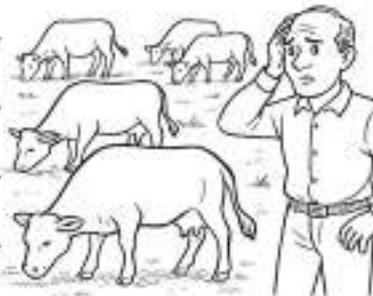
True or False

Circle whether the statement is true (T) or false (F).

1) The Tragedy of the Commons is a way to understand cattle grazing.	T	F
2) Overfishing in the ocean is another example of common resource use.	T	F
3) The phrase comes from an article written by Garrett Hardin.	T	F
4) Government control is the only solution to the Tragedy of the Commons.	T	F
5) In Hardin's example, cows were owned by one wealthy farmer.	T	F
6) Hardin's story shows that private ownership always protects resources best.	T	F

Questions: Use information from the text to support your answer.

1) What is the Elimination famous?


2) What are the 3 solutions to the Tragedy of the Commons?

PREVIEW

Ordering

Put these events of the Tragedy of the Commons in the correct order (1-6):

	The field becomes ruined and no longer produces grass.
	The grass cannot grow back fast enough.
	Garrett Hardin writes about a village field used by everyone.
	People keep adding more cows to the field.
	At first, each villager only brings one cow to graze.
	Villagers choose short-term personal benefit over long-term protection.

Timeline: Global Actions On Sustainability

How Global Sustainability Has Changed

Over the years, countries worldwide worked together to protect the environment. Meetings, reports, and agreements shaped how people think about sustainability. These steps reduce pollution, fight climate change, and create a fairer future.

True or False

Is the statement true or false?

1) The Stockholm Conference in 1972 led to creating the UNEP program.	T	F
2) Agenda 21 was agreed upon during the Rio Earth Summit in 1992.	T	F
3) Rio+20 created the document The Future We Want.	T	F
4) Countries update Paris Agreement plans every five years, not ten.	T	F
5) The UN SDGs included 17 goals, to be reached by 2030.	T	F
6) Each country updates its Paris Agreement climate plans every ten years.	T	F

Order

Order the following events in order: Number 1-8.

Order	Event
1	UN creates global agreement on poverty, health, environment.
2	UN report Brundtland Report calls for fairness for future needs.
3	UN launches 1972 Conference on a better world.
4	First global meeting in Stockholm to discuss protecting the environment.
5	Rio+20 meeting calls for stronger global action on sustainability.
6	Leaders in Rio create Agenda 21 as a guide to action.
7	Nearly all nations agree to limit warming to 2°C.
8	Countries sign Kyoto agreement to reduce greenhouse gases.

Questions

Answer the questions below using evidence from the text.

1) Why was the 1972 Stockholm Conference such an important first step?

2) How did the Brundtland Report change how people think about sustainability?

Social Media Post – Fair Trade Products

DanielFerguson

Is buying fair trade products really helping workers and protecting the environment? Fair trade coffee, chocolate, and sugar promise better pay for farmers and land care. But critics say prices are too high and rules are weak.

11:30 AM – 21/08/2025 – 1,529 SHARES 5,921 LIKES

 Emily_93: Fair trade supports over 1.7 million farmers worldwide, especially in Africa and Latin America. Farmers earn 10–20% more for crops, which helps them avoid poverty and protect soil and forests from unsustainable farming.

 Jason_77: Fair trade products are often 20–40% more expensive for Canadian shoppers. Many farmers already struggle with high food prices, and critics argue companies do not make a profit while farmers get only a small benefit.

 Sofia_21: Instead of only buying fair trade, Canadians could combine local food movements and organic farming. Buying local produce in Canada lowers transport emissions and still helps farmers. It's a win-win for both sustainability and the environment.

 Emily_93: Studies show fair trade does more than just help farmers. It invests in schools, clean water, and healthcare. In Peru, cocoa farmers receive new classroom supplies with funds. It's not just about money—it strengthens entire local communities and their environment.

 Jason_77: Some reports show that less than half of the money from fair trade actually reaches farmers. Middle organizations and governments reduce the impact, meaning the difference is smaller than some people believe.

 Sofia_21: Maybe the best path is balance. If Canadians buy some fair trade and some local products, it spreads support. Consumers should research companies to make sure since not all products meet strict environmental or worker standards.

 Emily_93: Coffee is one of the world's most traded crops. Fair trade coffee shade-grown coffee protects bird habitats and rainforest ecosystems. Without such programs, deforestation and soil erosion increase with rising global demand.

 Jason_77: Large companies sometimes use fair trade labels more as marketing than real change. If the system isn't monitored closely, workers may still face unsafe conditions and the land may not be managed sustainably.

 Sofia_21: Canadians can also push for stronger rules on all global trade. For example, adding stricter environmental checks to imports could make every farmer follow better standards, not just those in fair trade programs.

 Emily_93: Fair trade connects directly to the three sustainability pillars: economic fairness, social justice, and environmental care. Buying these products is one way individuals can support long-term global sustainability.

Questions Answer the questions below using evidence from the text.

1) Explain how fair trade helps both workers and the environment.

2) Why do some families in Canada struggle to buy fair trade?

3) Explain how local food and fair trade can work together.

True or False

Is the statement true or false?

1) Fair trade farmers always keep the full extra money they earn.

True False

2) Coffee is one of the most traded crops in the world.

True False

3) Farmers in Africa never benefit from fair trade programs.

True False

4) Some companies misuse labels as marketing instead of real fair trade.

True False

5) Fair trade chocolate is mainly grown in Canada and the USA.

True False

6) Buying local food in Canada can reduce transport emissions.

True False

Opinion

Write a comment that you would add to this conversation.

Username: _____

Date: _____

Memory Game – Natural Processes

Objective**What are we learning about?**

Students will learn important natural resource vocabulary by playing a memory match game. Each card will show either a key term or its definition. Students will match the correct pair. This will help them understand how natural resources are used, managed, and protected.

Materials What materials will you need for the activity?

- Set of Memory Game cards (provided)
- A small table or clear area of the floor

Instructions How will you complete the activity?

1. Divide the class into groups of 3 or 4. Give each group a set of Memory Game cards. (provided)
2. Have each group lay all the cards face down in a grid on a table.
3. The students take turns flipping over two cards at a time, trying to find a matching term and its definition.
4. If a student finds a match, they remove those cards from the grid and keep them.
5. If the cards do not match, they are turned back over, and the next student takes a turn.
6. The game continues until all the cards have been matched.
7. After the game, review the terms and definitions with the class.
8. Discuss why these terms are important to understand and how they relate to the topic.

Flow Resource

A resource used when it happens, like sunlight, wind, or ocean tides.

PREVIEW

Definition: Overfishing

Causing fish faster than they can reproduce, reducing fish populations worldwide.

Definition: Sustainability

Using resources in a way future generations can also meet their needs.

Aquifer

Underground rock or soil layer that stores fresh water for people and animals.

PREVIEW

Geothermal Energy

Heat from inside the Earth used to create energy or warmth naturally.

Desertification

When fertile land suddenly becomes desert due to drought, deforestation, or overgrazing.

Greenhouse Gases

Gases like carbon dioxide trapping heat in Earth's atmosphere, causing warming.

Fossil Fuels

Energy sources like coal, oil, and gas formed from ancient plants and animals.

Habitat

The natural home or environment where plants, animals, and people live.

Fair Trade

Buying and selling goods in ways that treat workers fairly and protect the environment.

Carbon Footprint

The amount of greenhouse gases a person or group creates through activities.

Biodiversity

The variety of different living species in an area, such as plants and animals.

Quiz Check-In

This quiz will assess students' understanding of the concepts covered in the memory game activity.

Name: _____

Mark

Pick two terms from the memory game. Write one sentence about each one.

Name: _____

Mark

Pick two terms from the menu. Write a sentence about each one.

VIEW

Name: _____

Mark

Pick two terms from the memory game. Write one sentence about each one.

Role-Play: Perspectives On Natural Resources

Objective**What are we learning about?**

Students will explore how different people view and use natural resources. By acting out real-world roles—like fisher, logger, miner, Indigenous Elder, environmental activist, government official, or company manager—students will see how perspectives can clash or work together. They will reflect on how choices about resources affect people, the economy, and the environment in different ways.

Materials**What do we need for our activity?**

- Scenario cards (several situations) (provided)
- Props or costume options
- Timer or stopwatch

Instructions**How will we complete our activity?**

- 1) Divide the class into small groups of 3 to 4 students.
- 2) Provide each group with a scenario card that outlines a specific situation related to the topic being studied.
- 3) Give out roles to each student in the group, assigning them a character within the scenario, or let them decide and take roles.
- 4) If available, distribute props or costumes that may help students embody their roles more effectively.
- 5) Set the timer to allocate a specific amount of time for the groups to discuss and act out their scenarios.
- 6) Allow each group to present their role-play to the class.
- 7) After all groups have presented, initiate a class discussion to reflect on the different approaches and outcomes observed during the role-plays.
- 8) Distribute reflection sheets for students to express what they learned and felt during the activity.

Criteria

Use the criteria below to complete the activity.

Criteria	Description
Creativity	Show what your character thinks and feels. Use ideas that make the role-play more real and interesting.
Voice	Speak clearly and loudly so others can hear. Change your voice to match your character's feelings.
Actions	Use body movements, facial expressions, and actions that match your character's story.
Stay in Role	Stay in role as your character. Don't break role until you're finished.
Teamwork	Work together for a common goal. Be helpful. Take turns and make sure everyone joins.

Scenario Cards Go to the page below.

Scenario	Description
1 The Collapse of the Cod Fishery	<p>A small coastal town has been cod fishing for generations. Families remember when fish were so plentiful that you could almost scoop them out with baskets. In the last few decades, larger ships with sonar and factory freezers arrived, catching fish at a massive rate. Fish stocks fell quickly, and the government announced a moratorium on commercial fishing. Local fishers lost their jobs, and many left the town to find new work. Others protested, asking for support. At the same time, environmental activists argued the pause was needed to protect the ocean. Some people argued new rules could allow the fish population to recover, but nobody could agree on the best path forward.</p>
2 Rainforest Cleared for Cattle and Crops	<p>In a logging region of South America, huge parts of rainforest are being cut down to raise cattle and grow soybeans. At first, families celebrated the new farmland and the money it brought. But soon the cleared land grew hot and dry, and grass no longer grew well for the cattle. Farmers began cutting down even more forest. Meanwhile, Indigenous communities living nearby lost parts of their hunting grounds and sacred sites. Environmental activists visited the area, warning that the forest loss released large amounts of carbon dioxide. Some company managers argued that palm oil and cattle exports were too valuable to stop. The debate became tense as each group claimed the forest for different reasons.</p>

Scenario Cards

Cut out the topics below.

Scenario	Description
3 Mining for Bauxite in the Rainforest	Deep in a tropical rainforest, a global mining company plans to dig for bauxite, used to make aluminum. Company managers promise jobs and money for the region, but local farmers fear losing their fertile soil and clean water. Indigenous Elders explain that the land holds ancient stories and animals that must be protected. Some young people from the community are divided: should they work for the mine to earn money or resist to save their land? The government struggles to decide, since the mine would bring taxes and economic growth. Meetings become heated as voices from every side try to be heard.
4 The Spread of Desertification	In the deserts of Africa, families are struggling with less rainfall each year. Farmers depend on goats for milk and wool, but the goats eat plants that hold the soil, leaving bare soil. Without grass, the winds blow dust across the land, and the soil slowly turns into desert. Children walk longer distances to school, and adults recall when the land once supported crops. A government worker arrives to encourage planting trees, while an international aid group brings sheep. The debate over whether to raise goats or switch to sheep, which graze less, shows how climate, animals, and human choices are linked.
5 Tidal Energy in Nova Scotia	Along the shores of Nova Scotia, a new energy project is being built. Engineers show how turbines will use the tides to produce clean electricity. Local fishers worry that the turbines will damage their nets and habitats, reducing their catch. The government promises compensation, but not everyone trusts this. An Indigenous Elder speaks about the need to respect the ocean, while young activists praise renewable energy as the future. As the turbines are tested, strange changes in currents are noticed. Fishermen spread about declining fish stocks. Meetings are filled with anger and fear, each group standing firm on its point of view.
6 The Chocolate Bar Choice	In West Africa, many cocoa farmers live in poverty even though chocolate is a global industry worth billions. Some children work on farms instead of going to school because families cannot pay wages for adult workers. International companies buy cocoa at low prices, while small farmers say they cannot survive. Fair Trade groups step in, promising better pay and safe working conditions. Activists in Canada launch a campaign asking schools to sell only Fair Trade chocolate. Some students and parents are excited to help, while others argue that the bars cost too much. Local shop owners worry that customers will stop buying if prices rise. The discussion spreads, and communities are forced to choose between saving money and supporting fairness.

Scenario Cards

Cut out the topics below.

Scenario	Description
7 Hydroelectric Dam Proposal in Canada	<p>A Canadian city announces plans for a large hydroelectric dam on a river. Engineers explain it will bring clean power to thousands of homes. But the project will flood villages, forests, and farmland. Local farmers and Indigenous communities protest, saying their homes and sacred sites will be underwater. The company promises to relocate families and pay for losses, but people say no amount of money can replace their heritage. Environmentalists warn that animal habitats will be destroyed. Construction workers want the jobs, while politicians promote the project as progress. Journalists begin at the construction site as tension builds.</p>
8 Meat and Deforestation Debate	<p>In South America, young people organize to reduce meat consumption, highlighting deforestation caused by cattle ranching. They launch a campaign called "Leave More Forest." Cattle ranchers call the movement an attack on their livelihoods. Activists argue that eating less meat will save forests and reduce greenhouse gases. Politicians step in, unsure whether to support the movement or new environmental laws. Restaurants face pressure to change menus. Consumers argue about personal freedom and environmental responsibility. The conflict grows into a national debate, splitting families and communities.</p>
9 Global Debate on Climate Change	<p>A group of international leaders meet to discuss climate change and greenhouse gas emissions. Canadian officials arrive, saying the country already uses hydro and wind power, but critics point out that oil and gas extraction is still expanding. Small island nations demand urgent action, warning they are drowning under rising seas. Oil company representatives argue that energy security and safety are more important. Protesters outside call for a ban on all forms of fossil fuels. Inside the meeting, voices clash over who should take responsibility and how fast change should happen. The room fills with tension as the debate continues.</p>
10 Pipeline Protest in the Prairies	<p>On the Canadian Prairies, a pipeline is proposed to move oil across Indigenous lands. Company managers argue that the pipeline is safe and needed for the economy. Indigenous leaders gather to protest, saying it threatens sacred water and land. Government officials are caught in the middle, pressured by business groups and environmental activists. Families are divided, as some members hope for jobs while others join the protests. News reporters arrive, capturing images of camps, speeches, and police presence. The conflict becomes national news, with everyone demanding to be heard.</p>

Rubric

How did you do on the activity?

Criteria	1 Point	2 Points	3 Points	4 Points
Creativity	Did not try to pretend.	Tried a little but didn't add ideas.	Used imagination and helped make the scene better.	Used great ideas and made the role-play exciting and real.
Voice	Hard to hear or too quiet.	Sometimes clear, but not loud or strong.	Clear and matched the feelings of the character.	Loud, clear, and showed strong feelings with voice.
Action	Did not act out the character.	A few actions, not always connected to role.	Used actions that matched the character's role.	Used many strong actions that were clear and realistic.
Stay in Role	Acted like themselves, not the character.	Acted like the character, but did not stay in character.	Mostly stayed in character during the scene.	Stayed in character the whole time.
Teamwork	Did not help or listen.	Helped a little.	Helped others to succeed with the project.	Shared, listened, and helped make the group's work better.

Teacher Comments

Work

Student Comments – What Could You Do Better?

Name: _____

Date: _____

Unit Test: Natural Resources Around The World

Total	Mark
/	/

1) Which of the following is a renewable resource? a) Fossil Fuel b) Biomass c) Coal d) Natural Gas	2) Which of the following is not a flow resource? a) Waterfalls – Hydroelectricity b) The Sun – Solar Energy c) Wind d) Fossil Fuels
3) Which of the following is a non-renewable resource? a) Coal b) Biomass c) Geothermal energy d) Solar energy	4) Which form of energy uses heat from the Earth's core? a) Biomass b) Geothermal c) Solar d) Hydroelectricity
5) Which Indigenous group in North America has traditions of protecting nature? a) Inuit b) Cree c) Haida d) Maori	6) Which form of energy uses plants or animals to make electricity? a) Coal b) Biomass c) Geothermal d) Solar
7) Which resource forms after millions of years under heat and pressure? a) Wind b) Fossil Fuels c) Timber d) Bamboo	8) Which country produces the most hydroelectric power? a) Canada b) Brazil c) China d) USA
9) Which agreement gave countries rights to ocean resources 200 miles out? a) Brundtland Report b) Paris Climate Accord c) United Nations Law of the Sea d) Kyoto Protocol	10) Which pillar of sustainability is focused on equity and human rights? a) Economic Pillar b) Social Pillar c) Environmental Pillar d) Industrial Pillar

PREVIEW

Define What do the terms below mean?

Mark

/

Definition – What does it mean?

Term	Definition – What does it mean?
Deforestation	
Fair Trade	
The Tragedy of the Commons	

Short Answer

Answer the questions below

Mark

/

1) What is the difference between a renewable and non-renewable resource?

2) Why are some indigenous groups upset about how natural resources are used on their land?

3) What is overfishing? Why should we be worried about it?

PREVIEW

Long Answer

Answer the questions below.

Mark

/

1) What does sustainability mean? What kinds of things are humans doing that are not leading to sustainability? What can we do to become more sustainable?

PREVIEW

2) What is ocean power, such as tidal and wave energy? Explain how it works, the benefits it provides, and the challenges it faces.